Stationary isothermic surfaces in Euclidean 3-space

被引:4
|
作者
Magnanini, Rolando [1 ]
Peralta-Salas, Daniel [2 ]
Sakaguchi, Shigeru [3 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] CSIC, Inst Ciencias Matemat, Plaza Murillo 2, E-28049 Madrid, Spain
[3] Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
EMBEDDED SURFACES; MINIMAL-SURFACES; UNIQUENESS; TOPOLOGY; GEOMETRY;
D O I
10.1007/s00208-015-1212-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a domain in R-3 with partial derivative Omega = partial derivative(R-3\(Omega) over bar), where partial derivative Omega is unbounded and connected, and let u be the solution of the Cauchy problem for the heat equation partial derivative(t)u = Delta u over R-3, where the initial data is the characteristic function of the set Omega(c) = R-3\Omega. We show that, if there exists a stationary isothermic surface Gamma of u with Gamma boolean AND partial derivative Omega = empty set , then both partial derivative Omega and Gamma must be either parallel planes or co-axial circular cylinders. This theorem completes the classification of stationary isothermic surfaces in the case that Gamma boolean AND partial derivative Omega = empty set and partial derivative Omega is unbounded. To prove this result, we establish a similar theorem for uniformly dense domains in R-3, a notion that was introduced by Magnanini et al. (Trans Am Math Soc 358:4821-4841, 2006). In the proof, we use methods from the theory of surfaces with constant mean curvature, combined with a careful analysis of certain asymptotic expansions and a surprising connection with the theory of transnormal functions.
引用
收藏
页码:97 / 124
页数:28
相关论文
共 50 条
  • [1] Stationary isothermic surfaces in Euclidean 3-space
    Rolando Magnanini
    Daniel Peralta-Salas
    Shigeru Sakaguchi
    Mathematische Annalen, 2016, 364 : 97 - 124
  • [2] ON THE HASIMOTO SURFACES IN EUCLIDEAN 3-SPACE
    Kaymanli, Gul Ugur
    Ekici, Cumali
    Kocak, Mahmut
    JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 883 - 890
  • [3] EMBEDDINGS OF SURFACES IN EUCLIDEAN 3-SPACE
    BURGESS, CE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (07): : A629 - A629
  • [4] PARALLEL SURFACES TO TRANSLATION SURFACES IN EUCLIDEAN 3-SPACE
    Cetin, Muhammed
    Tuncer, Yilmaz
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2015, 64 (02): : 47 - 54
  • [5] Singularities of Translation Surfaces in the Euclidean 3-Space
    Tomonori Fukunaga
    Masatomo Takahashi
    Results in Mathematics, 2022, 77
  • [6] Weingarten quadric surfaces in a Euclidean 3-space
    Kim, Min Hee
    Yoon, Dae Won
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (03) : 479 - 485
  • [7] On the spinor representation of surfaces in Euclidean 3-space
    Friedrich, T
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) : 143 - 157
  • [8] A Note on Minimal Surfaces in Euclidean 3-Space
    Zu Huan Yu
    Qing Zhong Li
    Acta Mathematica Sinica, English Series, 2007, 23 : 2079 - 2086
  • [9] On Weingarten surfaces in Euclidean and Lorentzian 3-space
    Guilfoyle, Brendan
    Klingenberg, Wilhelm
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2010, 28 (04) : 454 - 468
  • [10] Affine translation surfaces in Euclidean 3-space
    Liu, Huili
    Yu, Yanhua
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2013, 89 (09) : 111 - 113