Sub-cellular quantitative optical diffraction tomography with digital holographic microscopy

被引:4
作者
Charriere, Florian [1 ]
Kuehn, Jonas [1 ]
Colomb, Tristan [3 ]
Cuche, Etienne [2 ]
Marquet, Pierre [3 ]
Depeursinge, Christian [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Imaging & Appl Opt Inst, CH-1015 Lausanne, Switzerland
[2] Lyncee Tec SA, PSE A, CH-1015 Lausanne, Switzerland
[3] Ctr Neurosci Psychiat, Dept Psychiat DP CHUV, CH-1008 Prilly, Switzerland
来源
IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES V | 2007年 / 6441卷
基金
瑞士国家科学基金会;
关键词
digital holography; tomography; 3D imaging; cell imaging;
D O I
10.1117/12.700540
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Digital holographic microscopy (DHM) is an interferometric technique, providing quantitative mapping of the phase shift induced by semi-transparent microscopic specimens, such as cells, with sub-wavelenght resolution along the optical axis. Thanks to actual PCs and CCDs, DHM provides nowadays cost-effective instruments for real-time measurements at very high acquisition rates, with sub-micron transverse resolution. However, DHM phase images do not reveal the three-dimensional (3D) internal distribution of refractive index, but a phase shift resulting from a mean refractive index (RI) integrated over the cellular thickness. Standard optical diffraction tomography (ODT) techniques can be efficiently applied to reveal internal structures and to measure 3D RI spatial distributions, by recording 2D DHM phase data for different sample orientations or illumination beam direction, in order to fill up entirely the Ewald sphere in the Fourier space. The 3D refractive index can then be reconstructed, even in the direct space with backpropagation algorithms or from the Fourier space with inverse Fourier transform. The presented technique opens wide perspectives in 3D cell imaging: the DHM-based micro-tomography furnishes invaluable data on the cell components optical properties, potentially leading. to information about organelles intracellular distribution. Results obtained on biological specimens will be presented. Morphometric measurements can be extracted from the tomographic data, by detection based on the refractive index contrast within the 3D reconstructions. Results and perspectives about sub-cellular organelles identification inside the cell will also be exposed.
引用
收藏
页数:6
相关论文
共 12 条
[2]   Characterization of microlenses by digital holographic microscopy [J].
Charrière, F ;
Kühn, J ;
Colomb, T ;
Montfort, F ;
Cuche, E ;
Emery, Y ;
Weible, K ;
Marquet, P ;
Depeursinge, C .
APPLIED OPTICS, 2006, 45 (05) :829-835
[3]   Cell refractive index tomography by digital holographic microscopy [J].
Charrière, F ;
Marian, A ;
Montfort, F ;
Kuehn, J ;
Colomb, T ;
Cuche, E ;
Marquet, P ;
Depeursinge, C .
OPTICS LETTERS, 2006, 31 (02) :178-180
[4]   Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms [J].
Cuche, E ;
Marquet, P ;
Depeursinge, C .
APPLIED OPTICS, 1999, 38 (34) :6994-7001
[5]   Digital holography for quantitative phase-contrast imaging [J].
Cuche, E ;
Bevilacqua, F ;
Depeursinge, C .
OPTICS LETTERS, 1999, 24 (05) :291-293
[6]   Aperture apodization using cubic spline interpolation: application in digital holographic microscopy [J].
Cuche, E ;
Marquet, P ;
Depeursinge, C .
OPTICS COMMUNICATIONS, 2000, 182 (1-3) :59-69
[7]   Spatial filtering for zero-order and twin-image elimination in digital off-axis holography [J].
Cuche, E ;
Marquet, P ;
Depeursinge, C .
APPLIED OPTICS, 2000, 39 (23) :4070-4075
[8]  
Dandliker R., 1970, Optics Communications, V1, P323, DOI 10.1016/0030-4018(70)90032-5
[9]   Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy [J].
Marquet, P ;
Rappaz, B ;
Magistretti, PJ ;
Cuche, E ;
Emery, Y ;
Colomb, T ;
Depeursinge, C .
OPTICS LETTERS, 2005, 30 (05) :468-470
[10]  
MONTFORT F, 2005, TOMOGRAPHY USING MUL