The energy decay problem for wave equations with nonlinear dissipative terms in Rn

被引:27
作者
Todorova, Grozdena [1 ]
Yordanov, Borislav [1 ]
机构
[1] Univ Tennessee, Knoxville, TN 37996 USA
关键词
wave equation; nonlinear dissipation; decay rates;
D O I
10.1512/iumj.2007.56.2963
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior of energy for wave equations with nonlinear damping g(u(t)) = vertical bar u(t)vertical bar(m-1) u(t) in R-n (n >= 3) as time t -> infinity. The main result shows a polynomial decay rate of energy under the condition 1 < m <= (n + 2)/(n + 1). Previously, only logarithmic decay rates were found.
引用
收藏
页码:389 / 416
页数:28
相关论文
共 14 条
[1]   Fine asymptotics for fast diffusion equations [J].
Carrillo, JA ;
Vázquez, JL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1023-1056
[2]  
Duoandikoetxea J., 2000, FOURIER ANAL
[3]  
Haraux A., 1978, C R ACAD SCI PARIS S, V287, pA507
[4]  
LASIECKA I, 2005, ENERGY DECAY RATES S
[5]  
LIANG JF, 2004, NONLINEAR HYPERBOLIC
[6]  
Lions J. L., 1965, B SOC MATH FRANCE, V93, P43
[7]  
Matsumura A., 1976, Publ. Res. Inst. Math. Sci, V12, P169, DOI DOI 10.2977/PRIMS/1195190962
[8]  
MOAL T, 1991, TSUKUBA J MATH, V15, P151
[9]   ON ENERGY DECAY-NONDECAY PROBLEMS FOR WAVE-EQUATIONS WITH NONLINEAR DISSIPATIVE TERM IN R(N) [J].
MOCHIZUKI, K ;
MOTAI, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1995, 47 (03) :405-421
[10]   ASYMPTOTIC STABILITY OF BOUNDED OR ALMOST PERIODIC-SOLUTION OF WAVE-EQUATION WITH NONLINEAR DISSIPATIVE TERM [J].
NAKAO, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 58 (02) :336-343