Quantum maximum entropy principle for a system of identical particles

被引:22
作者
Trovato, M. [1 ]
Reggiani, L. [2 ,3 ]
机构
[1] Univ Catania, Dipartmento Matemat, I-95125 Catania, Italy
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
[3] Univ Salento, CNISM, I-73100 Lecce, Italy
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 02期
关键词
INFORMATION-THEORY; SCHEME; STATE; GAS;
D O I
10.1103/PhysRevE.81.021119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By introducing a functional of the reduced density matrix, we generalize the definition of a quantum entropy which incorporates the indistinguishability principle of a system of identical particles. With the present definition, the principle of quantum maximum entropy permits us to solve the closure problem for a quantum hydrodynamic set of balance equations corresponding to an arbitrary number of moments in the framework of extended thermodynamics. The determination of the reduced Wigner function for equilibrium and nonequilibrium conditions is found to become possible only by assuming that the Lagrange multipliers can be expanded in powers of h(2). Quantum contributions are expressed in powers of h(2) while classical results are recovered in the limit h -> 0.
引用
收藏
页数:11
相关论文
共 30 条
[1]   QUANTUM CORRECTION TO THE EQUATION OF STATE OF AN ELECTRON-GAS IN A SEMICONDUCTOR [J].
ANCONA, MG ;
IAFRATE, GJ .
PHYSICAL REVIEW B, 1989, 39 (13) :9536-9540
[2]  
[Anonymous], INTRO PHYS STAT
[3]  
[Anonymous], QUANTUM STAT MECH
[4]  
[Anonymous], KINETIC THEORY NON 3
[5]   WIGNER DISTRIBUTION FUNCTION AND SECOND QUANTIZATION IN PHASE SPACE [J].
BRITTIN, WE ;
CHAPPELL, WR .
REVIEWS OF MODERN PHYSICS, 1962, 34 (04) :620-&
[6]   Low-temperature Bose-Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach [J].
Castin, Y ;
Dum, R .
PHYSICAL REVIEW A, 1998, 57 (04) :3008-3021
[7]   Quantum moment hydrodynamics and the entropy principle [J].
Degond, P ;
Ringhofer, C .
JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (3-4) :587-628
[8]   One-dimensional Bose gases with N-body attractive interactions [J].
Fersino, E. ;
Mussardo, G. ;
Trombettoni, A. .
PHYSICAL REVIEW A, 2008, 77 (05)
[9]   Smooth quantum potential for the hydrodynamic model [J].
Gardner, CL ;
Ringhofer, C .
PHYSICAL REVIEW E, 1996, 53 (01) :157-167
[10]   THE QUANTUM HYDRODYNAMIC MODEL FOR SEMICONDUCTOR-DEVICES [J].
GARDNER, CL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (02) :409-427