A Selective Ensemble Classification Method Combining Mammography Images with Ultrasound Images for Breast Cancer Diagnosis

被引:20
作者
Cong, Jinyu [1 ,2 ]
Wei, Benzheng [3 ]
He, Yunlong [1 ,2 ]
Yin, Yilong [4 ]
Zheng, Yuanjie [1 ,2 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Key Lab Intelligent Comp & Informat Secur Univ Sh, Inst Life Sci,Shandong Prov Key Lab Distributed C, Jinan 250358, Peoples R China
[2] Shandong Normal Univ, Key Lab Intelligent Informat Proc, Jinan 250358, Peoples R China
[3] Shandong Univ Tradit Chinese Med, Coll Sci & Technol, Jinan 250014, Peoples R China
[4] Shandong Univ, Sch Comp Sci & Technol, Jinan 250100, Peoples R China
关键词
COMPUTER-AIDED DIAGNOSIS; PERFORMANCE; LESIONS;
D O I
10.1155/2017/4896386
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Breast cancer has been one of the main diseases that threatens women's life. Early detection and diagnosis of breast cancer play an important role in reducing mortality of breast cancer. In this paper, we propose a selective ensemble method integrated with the KNN, SVM, and Naive Bayes to diagnose the breast cancer combining ultrasound images with mammography images. Our experimental results have shown that the selective classification method with an accuracy of 88.73% and sensitivity of 97.06% is efficient for breast cancer diagnosis. And indicator R presents a new way to choose the base classifier for ensemble learning.
引用
收藏
页数:7
相关论文
共 18 条
[1]  
Buist D. S. M., 2006, JNCI-J NATL CANCER I, V16, P323
[2]   Breast lesions on sonograms: Computer-aided diagnosis with nearly setting-independent features and artificial neural networks [J].
Chen, CM ;
Chou, YH ;
Han, KC ;
Hung, GS ;
Tiu, CM ;
Chiou, HJ ;
Chiou, SY .
RADIOLOGY, 2003, 226 (02) :504-514
[3]   Cancer Statistics in China, 2015 [J].
Chen, Wanqing ;
Zheng, Rongshou ;
Baade, Peter D. ;
Zhang, Siwei ;
Zeng, Hongmei ;
Bray, Freddie ;
Jemal, Ahmedin ;
Yu, Xue Qin ;
He, Jie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (02) :115-132
[4]   Automated breast cancer detection and classification using ultrasound images: A survey [J].
Cheng, H. D. ;
Shan, Juan ;
Ju, Wen ;
Guo, Yanhui ;
Zhang, Ling .
PATTERN RECOGNITION, 2010, 43 (01) :299-317
[5]   Using sonography to screen women with mammographically dense breasts [J].
Crystal, P ;
Strano, SD ;
Shcharynski, S ;
Koretz, MJ .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2003, 181 (01) :177-182
[6]   Design of effective neural network ensembles for image classification purposes [J].
Giacinto, G ;
Roli, F .
IMAGE AND VISION COMPUTING, 2001, 19 (9-10) :699-707
[7]   Analysis of Co-Occurrence Texture Statistics as a Function of Gray-Level Quantization for Classifying Breast Ultrasound [J].
Gomez, W. ;
Pereira, W. C. A. ;
Infantosi, A. F. C. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (10) :1889-1899
[8]   Breast mass lesions: Computer-aided diagnosis models with mammographic and sonographic descriptors [J].
Jesneck, Jonathan L. ;
Lo, Joseph Y. ;
Baker, Jay A. .
RADIOLOGY, 2007, 244 (02) :390-398
[9]   Breast cancer detection: radiologists' performance using mammography with and without automated whole-breast ultrasound [J].
Kelly, Kevin M. ;
Dean, Judy ;
Lee, Sung-Jae ;
Comulada, W. Scott .
EUROPEAN RADIOLOGY, 2010, 20 (11) :2557-2564
[10]   Development and Application of a Suite of 4-D Virtual Breast Phantoms for Optimization and Evaluation of Breast Imaging Systems [J].
Kiarashi, Nooshin ;
Lo, Joseph Y. ;
Lin, Yuan ;
Ikejimba, Lynda C. ;
Ghate, Sujata V. ;
Nolte, Loren W. ;
Dobbins, James T., II ;
Segars, William P. ;
Samei, Ehsan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (07) :1401-1409