Some ideal lattices in partial Abelian monoids and effect algebras

被引:30
作者
Chevalier, G
Pulmannová, S
机构
[1] Univ Lyon 1, Inst Girard Desargues, UPRES A 5028, F-69622 Villeurbanne, France
[2] Slovak Acad Sci, Dept Math, Bratislava 81473, Slovakia
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2000年 / 17卷 / 01期
关键词
congruence; dimension equivalence; effect algebra; ideal; lattice of ideals; partial Abelian monoid; R-1-ideal; Riesz ideal; Sasaki projection;
D O I
10.1023/A:1006423311104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Congruences and ideals in partial Abelian monoids (PAM) are studied. It is shown that the so-called R-1-ideals in cancellative PAMs (CPAM) form a complete Brouwerian sublattice of the lattice of all ideals, and they are standard elements of it. In a special class of CPAMs, effect algebras, properties of ideals and congruences are studied in relation to the generalized Sasaki projections and dimensional equivalence.
引用
收藏
页码:75 / 92
页数:18
相关论文
共 19 条
[1]  
Bennett MK, 1998, TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998, P55
[2]  
Birkhoff G., 1967, AM MATH SOC C PUBL, VXXV
[3]  
Burmeister P, 1986, MODEL THEORETIC ORIE
[4]  
Chang C. C., 1958, Trans. Amer. Math. Soc., V88, P467, DOI DOI 10.1090/S0002-9947-1958-0094302-9
[5]  
CHEVALIER G, 1998, TATRA MT MATH PUBL, V15, P197
[6]  
Chovanec F., 1997, Tatra Mountains Mathematical Publications, V10, P183
[7]   EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS [J].
FOULIS, DJ ;
BENNETT, MK .
FOUNDATIONS OF PHYSICS, 1994, 24 (10) :1331-1352
[8]   FILTERS AND SUPPORTS IN ORTHOALGEBRAS [J].
FOULIS, DJ ;
GREECHIE, RJ ;
RUTTIMANN, GT .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (05) :789-807
[9]   TOWARD A FORMAL LANGUAGE FOR UNSHARP PROPERTIES [J].
GIUNTINI, R ;
GREULING, H .
FOUNDATIONS OF PHYSICS, 1989, 19 (07) :931-945
[10]   THE CENTER OF AN EFFECT ALGEBRA [J].
GREECHIE, RJ ;
FOULIS, D ;
PULMANNOVA, S .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1995, 12 (01) :91-106