Some ideal lattices in partial Abelian monoids and effect algebras

被引:30
作者
Chevalier, G
Pulmannová, S
机构
[1] Univ Lyon 1, Inst Girard Desargues, UPRES A 5028, F-69622 Villeurbanne, France
[2] Slovak Acad Sci, Dept Math, Bratislava 81473, Slovakia
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2000年 / 17卷 / 01期
关键词
congruence; dimension equivalence; effect algebra; ideal; lattice of ideals; partial Abelian monoid; R-1-ideal; Riesz ideal; Sasaki projection;
D O I
10.1023/A:1006423311104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Congruences and ideals in partial Abelian monoids (PAM) are studied. It is shown that the so-called R-1-ideals in cancellative PAMs (CPAM) form a complete Brouwerian sublattice of the lattice of all ideals, and they are standard elements of it. In a special class of CPAMs, effect algebras, properties of ideals and congruences are studied in relation to the generalized Sasaki projections and dimensional equivalence.
引用
收藏
页码:75 / 92
页数:18
相关论文
共 19 条
  • [1] Bennett MK, 1998, TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998, P55
  • [2] Birkhoff G., 1967, AM MATH SOC C PUBL, VXXV
  • [3] Burmeister P, 1986, MODEL THEORETIC ORIE
  • [4] Chang C. C., 1958, Trans. Amer. Math. Soc., V88, P467, DOI DOI 10.1090/S0002-9947-1958-0094302-9
  • [5] CHEVALIER G, 1998, TATRA MT MATH PUBL, V15, P197
  • [6] Chovanec F., 1997, Tatra Mountains Mathematical Publications, V10, P183
  • [7] EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS
    FOULIS, DJ
    BENNETT, MK
    [J]. FOUNDATIONS OF PHYSICS, 1994, 24 (10) : 1331 - 1352
  • [8] FILTERS AND SUPPORTS IN ORTHOALGEBRAS
    FOULIS, DJ
    GREECHIE, RJ
    RUTTIMANN, GT
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (05) : 789 - 807
  • [9] TOWARD A FORMAL LANGUAGE FOR UNSHARP PROPERTIES
    GIUNTINI, R
    GREULING, H
    [J]. FOUNDATIONS OF PHYSICS, 1989, 19 (07) : 931 - 945
  • [10] THE CENTER OF AN EFFECT ALGEBRA
    GREECHIE, RJ
    FOULIS, D
    PULMANNOVA, S
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1995, 12 (01): : 91 - 106