Self-affine sets with fibred tangents

被引:7
|
作者
Kaenmaki, Antti [1 ]
Koivusalo, Henna [2 ]
Rossi, Eino [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
[2] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
ASSOUAD DIMENSION; SCENERY FLOW; GEOMETRY; DISTRIBUTIONS;
D O I
10.1017/etds.2015.130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study tangent sets of strictly self-affine sets in the plane. If a set in this class satisfies the strong separation condition and projects to a line segment for sufficiently many directions, then for each generic point there exists a rotation O such that all tangent sets at that point are either of the form O((R x C) boolean AND B (0, 1)), where C is a closed porous set, or of the form O((l x {0}) boolean AND B (0, 1)), where l is an interval.
引用
收藏
页码:1915 / 1934
页数:20
相关论文
共 34 条
  • [21] Affine Embeddings of Cantor Sets in the Plane
    Algom, Amir
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 140 (02): : 695 - 757
  • [22] NON-ELLIPTIC WEBS AND CONVEX SETS IN THE AFFINE BUILDING
    Akhmejanov, Tair
    DOCUMENTA MATHEMATICA, 2020, 25 : 2413 - 2443
  • [23] On sets with few intersection numbers in finite projective and affine spaces
    Durante, Nicola
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04)
  • [24] Self-conformal sets with positive Hausdorff measure
    Angelevska, Jasmina
    Kaenmaki, Antti
    Troscheit, Sascha
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (01) : 200 - 223
  • [25] Embeddings of self-similar ultrametric Cantor sets
    Julien, Antoine
    Savinien, Jean
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (16) : 2148 - 2157
  • [26] On the Assouad dimension of self-similar sets with overlaps
    Fraser, J. M.
    Henderson, A. M.
    Olson, E. J.
    Robinson, J. C.
    ADVANCES IN MATHEMATICS, 2015, 273 : 188 - 214
  • [27] Measures with predetermined regularity and inhomogeneous self-similar sets
    Kaenmaki, Antti
    Lehrback, Juha
    ARKIV FOR MATEMATIK, 2017, 55 (01): : 165 - 184
  • [28] The quasi-Assouad dimension of stochastically self-similar sets
    Troscheit, Sascha
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) : 261 - 275
  • [29] Assouad type dimensions of infinitely generated self-conformal sets
    Banaji, Amlan
    Fraser, Jonathan M.
    NONLINEARITY, 2024, 37 (04)
  • [30] Visualizing Data Sets on the Grassmannian Using Self-Organizing Mappings
    Kirby, Michael
    Peterson, Chris
    2017 12TH INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION (WSOM), 2017, : 28 - 33