BEM-Fading regularization algorithm for Cauchy problems in 2D anisotropic heat conduction

被引:8
作者
Voinea-Marinescu, Andreea-Paula [1 ,2 ]
Marin, Liviu [1 ,2 ,3 ]
Delvare, Franck [4 ,5 ,6 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Dept Math, 14 Acad, Bucharest 010014, Romania
[2] Univ Bucharest, Res Inst Univ Bucharest ICUB, 90-92 Sos Panduri, Bucharest 050663, Romania
[3] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, 13 Calea 13 Septembrie, Bucharest 050711, Romania
[4] Normandie Univ, F-14032 Caen, France
[5] UNICAEN, LMNO, F-14032 Caen, France
[6] CNRS, UMR 6139, F-14032 Caen, France
关键词
Inverse problem; Cauchy problem; Anisotropic heat conduction; Fading regularization method algorithm; Boundary element method; BOUNDARY-ELEMENT METHOD; FUNDAMENTAL-SOLUTIONS; COMPLETION;
D O I
10.1007/s11075-021-01090-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the numerical reconstruction of the missing thermal boundary data on a part of the boundary for the steady-state heat conduction equation in anisotropic solids from the knowledge of exact or noisy Cauchy data on the remaining and accessible boundary. This inverse boundary value problem is tackled by applying and adapting to the anisotropic case the algorithm based on the fading regularization method, originally proposed by Cimetiere, Delvare, and Pons (Comptes Rendus de l'Academie des Sciences - Serie IIb - Mecanique, 328 639-644 2000), and Cimetiere, Delvare, et al. (Inverse Probl., 17 553-570 2001) for the isotropic heat conduction equation. The numerical implementation is realised for 2D homogeneous solids by using the boundary element method, whilst the numerical solution is stabilized/regularized by stopping the iterative process based on an L-curve type criterion (Hansen 1998).
引用
收藏
页码:1667 / 1702
页数:36
相关论文
共 50 条
[41]   Numerical Computation of 2D Domain Integrals in Boundary Element Method by (α, β) Distance Transformation for Transient Heat Conduction Problems [J].
Dong, Yunqiao ;
Tan, Zhengxu ;
Sun, Hengbo .
AXIOMS, 2024, 13 (07)
[42]   A new BEM for solving 2D and 3D elastoplastic problems without initial stresses/strains [J].
Feng, Wei-Zhe ;
Gao, Xiao-Wei ;
Liu, Jian ;
Yang, Kai .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 61 :134-144
[43]   An algorithm to solve coupled 2D rolling contact problems [J].
González, JA ;
Abascal, R .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 49 (09) :1143-1167
[44]   New treatment of the self-weight and the inertial effects of rotation for the BEM formulation of 2D anisotropic solids [J].
Shiah, Y. C. ;
Ye, Shang-Yu .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2016, 73 :170-180
[45]   On two hypersingular time-domain BEM for dynamic crack analysis in 2D anisotropic elastic solids [J].
Wuensche, Michael ;
Zhang, Chuanzeng ;
Garcia-Sanchez, Felipe ;
Saez, Andres ;
Sladek, Jan ;
Sladek, Vladimir .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (33-36) :2812-2824
[46]   RIBEM for 2D and 3D nonlinear heat conduction with temperature dependent conductivity [J].
Yang, Kai ;
Feng, Wei-zhe ;
Wang, Jing ;
Gao, Xiao-wei .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 87 :1-8
[47]   A new boundary element-free Galerkin method using dual CSRBFI for 2D inhomogeneous heat conduction problems [J].
Yang, Dong-Sheng ;
Ling, Jing ;
Gong, Wei ;
Wang, Hong-Ying ;
Zhao, Zhen-Hua .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 :52-62
[48]   BEM Solutions for 2D and 3D Dynamic Problems in Mindlin's Strain Gradient Theory of Elasticity [J].
Papacharalampopoulos, A. ;
Karlis, G. F. ;
Charalambopoulos, A. ;
Polyzos, D. .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (01) :45-73
[49]   Numerical solution of a 2D inverse heat conduction problem [J].
Qian, Zhi ;
Feng, Xiaoli .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (03) :467-484
[50]   Cubic Bezier splines for BEM heat transfer analysis of the 2-D continuous casting problems [J].
Cholewa R. ;
Nowak A.J. ;
Bialecki R.A. ;
Wrobel L.C. .
Computational Mechanics, 2002, 28 (3-4 SPEC.) :282-290