BEM-Fading regularization algorithm for Cauchy problems in 2D anisotropic heat conduction

被引:7
作者
Voinea-Marinescu, Andreea-Paula [1 ,2 ]
Marin, Liviu [1 ,2 ,3 ]
Delvare, Franck [4 ,5 ,6 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Dept Math, 14 Acad, Bucharest 010014, Romania
[2] Univ Bucharest, Res Inst Univ Bucharest ICUB, 90-92 Sos Panduri, Bucharest 050663, Romania
[3] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, 13 Calea 13 Septembrie, Bucharest 050711, Romania
[4] Normandie Univ, F-14032 Caen, France
[5] UNICAEN, LMNO, F-14032 Caen, France
[6] CNRS, UMR 6139, F-14032 Caen, France
关键词
Inverse problem; Cauchy problem; Anisotropic heat conduction; Fading regularization method algorithm; Boundary element method; BOUNDARY-ELEMENT METHOD; FUNDAMENTAL-SOLUTIONS; COMPLETION;
D O I
10.1007/s11075-021-01090-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the numerical reconstruction of the missing thermal boundary data on a part of the boundary for the steady-state heat conduction equation in anisotropic solids from the knowledge of exact or noisy Cauchy data on the remaining and accessible boundary. This inverse boundary value problem is tackled by applying and adapting to the anisotropic case the algorithm based on the fading regularization method, originally proposed by Cimetiere, Delvare, and Pons (Comptes Rendus de l'Academie des Sciences - Serie IIb - Mecanique, 328 639-644 2000), and Cimetiere, Delvare, et al. (Inverse Probl., 17 553-570 2001) for the isotropic heat conduction equation. The numerical implementation is realised for 2D homogeneous solids by using the boundary element method, whilst the numerical solution is stabilized/regularized by stopping the iterative process based on an L-curve type criterion (Hansen 1998).
引用
收藏
页码:1667 / 1702
页数:36
相关论文
共 50 条
[31]   CVEM-BEM Coupling with Decoupled Orders for 2D Exterior Poisson Problems [J].
Desiderio, Luca ;
Falletta, Silvia ;
Ferrari, Matteo ;
Scuderi, Letizia .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
[32]   Energetic BEM for the Numerical Solution of 2D Damped Waves Propagation Exterior Problems [J].
Aimi, A. ;
Diligenti, M. ;
Guardasoni, C. .
INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
[33]   A linear analytical boundary element method (BEM) for 2D homogeneous potential problems [J].
Friedrich, J .
COMPUTERS & GEOSCIENCES, 2002, 28 (05) :679-692
[34]   A multiple-scale Pascal polynomial for 2D Stokes and inverse Cauchy-Stokes problems [J].
Liu, Chein-Shan ;
Young, D. L. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 312 :1-13
[35]   FDM-based alternating iterative algorithms for inverse BVPs in 2D steady-state anisotropic heat conduction with heat sources [J].
Bucataru, Mihai ;
Marin, Liviu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
[36]   Exact boundary integral transformation of the thermoelastic domain integral in BEM for general 2D anisotropic elasticity [J].
Y. C. Shiah ;
C. L. Tan .
Computational Mechanics, 1999, 23 :87-96
[37]   An ACA-SBM for some 2D steady-state heat conduction problems [J].
Wei, Xing ;
Chen, Bin ;
Chen, Shenshen ;
Yin, Shuohui .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2016, 71 :101-111
[38]   Solving 2D transient rolling contact problems using the BEM and mathematical programming techniques [J].
González, JA ;
Abascal, R .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (04) :843-874
[39]   Numerical Computation of 2D Domain Integrals in Boundary Element Method by (α, β) Distance Transformation for Transient Heat Conduction Problems [J].
Dong, Yunqiao ;
Tan, Zhengxu ;
Sun, Hengbo .
AXIOMS, 2024, 13 (07)
[40]   A new BEM for solving 2D and 3D elastoplastic problems without initial stresses/strains [J].
Feng, Wei-Zhe ;
Gao, Xiao-Wei ;
Liu, Jian ;
Yang, Kai .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 61 :134-144