BEM-Fading regularization algorithm for Cauchy problems in 2D anisotropic heat conduction

被引:7
作者
Voinea-Marinescu, Andreea-Paula [1 ,2 ]
Marin, Liviu [1 ,2 ,3 ]
Delvare, Franck [4 ,5 ,6 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Dept Math, 14 Acad, Bucharest 010014, Romania
[2] Univ Bucharest, Res Inst Univ Bucharest ICUB, 90-92 Sos Panduri, Bucharest 050663, Romania
[3] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, 13 Calea 13 Septembrie, Bucharest 050711, Romania
[4] Normandie Univ, F-14032 Caen, France
[5] UNICAEN, LMNO, F-14032 Caen, France
[6] CNRS, UMR 6139, F-14032 Caen, France
关键词
Inverse problem; Cauchy problem; Anisotropic heat conduction; Fading regularization method algorithm; Boundary element method; BOUNDARY-ELEMENT METHOD; FUNDAMENTAL-SOLUTIONS; COMPLETION;
D O I
10.1007/s11075-021-01090-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the numerical reconstruction of the missing thermal boundary data on a part of the boundary for the steady-state heat conduction equation in anisotropic solids from the knowledge of exact or noisy Cauchy data on the remaining and accessible boundary. This inverse boundary value problem is tackled by applying and adapting to the anisotropic case the algorithm based on the fading regularization method, originally proposed by Cimetiere, Delvare, and Pons (Comptes Rendus de l'Academie des Sciences - Serie IIb - Mecanique, 328 639-644 2000), and Cimetiere, Delvare, et al. (Inverse Probl., 17 553-570 2001) for the isotropic heat conduction equation. The numerical implementation is realised for 2D homogeneous solids by using the boundary element method, whilst the numerical solution is stabilized/regularized by stopping the iterative process based on an L-curve type criterion (Hansen 1998).
引用
收藏
页码:1667 / 1702
页数:36
相关论文
共 50 条
[21]   Identical approximation operator and regularization method for the Cauchy problem of 2-D heat conduction equation [J].
He, Shangqin ;
Feng, Xiufang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) :12931-12944
[22]   BEM STUDY OF 3D HEAT CONDUCTION IN MULTIPLY ADJOINED ANISOTROPIC MEDIA WITH QUADRATIC DOMAIN HEAT GENERATION [J].
Tuan, N. A. ;
Shiah, Y. C. .
JOURNAL OF MECHANICS, 2019, 35 (02) :225-231
[23]   Level set-based topology optimization for 2D heat conduction problems using BEM with objective function defined on design-dependent boundary with heat transfer boundary condition [J].
Jing, Guoxian ;
Isakari, Hiroshi ;
Matsumoto, Toshiro ;
Yamada, Takayuki ;
Takahashi, Toru .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 61 :61-70
[24]   A General Algorithm for Evaluating Domain Integrals in 2D Boundary Element Method for Transient Heat Conduction [J].
Dong, Yunqiao ;
Zhang, Jianming ;
Xie, Guizhong ;
Lu, Chenjun ;
Li, Yuan ;
Han, Xu ;
Li, Guangyao .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2015, 12 (02)
[25]   A hypersingular time-domain BEM for 2D dynamic crack analysis in anisotropic solids [J].
Wuensche, M. ;
Zhang, Ch. ;
Kuna, M. ;
Hirose, S. ;
Sladek, J. ;
Sladek, V. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (02) :127-150
[26]   Direct Volume-to-Surface Integral Transformation for 2D BEM Analysis of Anisotropic Thermoelasticity [J].
Shiah, Y. C. ;
Hsu, Chung-Lei ;
Hwu, Chyanbin .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 102 (04) :257-270
[27]   An Analytic Solution for 2D Heat Conduction Problems with General Dirichlet Boundary Conditions [J].
Hsu, Heng-Pin ;
Tu, Te-Wen ;
Chang, Jer-Rong .
AXIOMS, 2023, 12 (05)
[28]   A simple, effective and high-precision boundary meshfree method for solving 2D anisotropic heat conduction problems with complex boundaries [J].
Ling, Jing ;
Yang, Dongsheng .
SCIENTIFIC REPORTS, 2024, 14 (01)
[29]   The application of FEM-BEM coupling method for steady 2D heat transfer problems with multi-scale structure [J].
Qin, Fei ;
He, Qi ;
Gong, Yanpeng ;
An, Tong ;
Chen, Pei ;
Dai, Yanwei .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 137 :78-90
[30]   CVEM-BEM Coupling with Decoupled Orders for 2D Exterior Poisson Problems [J].
Luca Desiderio ;
Silvia Falletta ;
Matteo Ferrari ;
Letizia Scuderi .
Journal of Scientific Computing, 2022, 92