A HEAT FLOW APPROACH TO ONSAGER'S CONJECTURE FOR THE EULER EQUATIONS ON MANIFOLDS

被引:14
作者
Isett, Philip [1 ]
Oh, Sung-Jin [2 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
INCOMPRESSIBLE EULER; ENERGY-CONSERVATION; DISSIPATION;
D O I
10.1090/tran/6549
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple proof of Onsager's conjecture concerning energy conservation for weak solutions to the Euler equations on any compact Riemannian manifold, extending the results of Constantin-E-Titi and Cheskidov-Constantin-Friedlander-Shvydkoy in the flat case. When restricted to T-d or R-d, our approach yields an alternative proof of the sharp result of the latter authors. Our method builds on a systematic use of a smoothing operator defined via a geometric heat flow, which was considered by Milgram-Rosenbloom as a means to establish the Hodge theorem. In particular, we present a simple and geometric way to prove the key nonlinear commutator estimate, whose proof previously relied on a delicate use of convolutions.
引用
收藏
页码:6519 / 6537
页数:19
相关论文
共 22 条
  • [1] Aubin T., 1998, SOME NONLINEAR PROBL
  • [2] Bergh Joran, 1976, GRUND MATH WISS, V223
  • [3] Buckmaster T., 2013, ONSAGERS CONJECTURE
  • [4] Buckmaster T., 2013, TRANSPORTING MICROST
  • [5] Energy conservation and Onsager's conjecture for the Euler equations
    Cheskidov, A.
    Constantin, P.
    Friedlander, S.
    Shvydkoy, R.
    [J]. NONLINEARITY, 2008, 21 (06) : 1233 - 1252
  • [6] Choffrut A., 2012, PREPRINT
  • [7] h-Principles for the Incompressible Euler Equations
    Choffrut, Antoine
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) : 133 - 163
  • [8] ONSAGER CONJECTURE ON THE ENERGY-CONSERVATION FOR SOLUTIONS OF EULER EQUATION
    CONSTANTIN, P
    TITI, ES
    WEINAN, F
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) : 207 - 209
  • [9] De Lellis C., 2012, Dissipative continuous Euler flows
  • [10] De Lellis C., 2009, ANN MATH