Weak solutions for fractional p(x, •)-Laplacian Dirichlet problems with weight

被引:0
作者
Hammou, Mustapha Ait [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Dept Math, Lab Math Anal & Applicat, Fes, Morocco
来源
ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS | 2022年 / 42卷 / 02期
关键词
Fractional p(center dot; center dot)-Laplacian operator; weighted variable exponent space; topological degree; EXISTENCE; SPACES; FUNCTIONALS;
D O I
10.1515/anly-2021-1007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to show the existence of weak solutions for a problem involving the fractional p(x, center dot)-Laplacian operator of the following form: {(-Delta(p)(x,center dot))(s)u(x) + w(x)vertical bar u vertical bar(p) over bar ((x)-2)u = lambda f(x, u) in Omega, u = 0 in R-N \ Omega, The main tool used for this purpose is the Berkovits topological degree.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 27 条
  • [1] Abdelkader MV, 2013, APPL MATH E-NOTES, V13, P228
  • [2] Three solutions for a Dirichlet boundary value problem involving the p-Laplacian
    Afrouzi, G. A.
    Heidarkhani, S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (10) : 2281 - 2288
  • [3] AIT HAMMOU M., 2019, Recent advances in intuitionistic fuzzy logic systems, Stud. Fuzziness Soft Comput., V372, P1
  • [4] Ait Hammou M., 2023, KRAGUJEVAC J MATH, V47, P523
  • [5] Ait Hammou M., 2021, MOROCCAN J PURE APPL, P7
  • [6] Weighted Variable Sobolev Spaces and Capacity
    Aydin, Ismail
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [7] Existence and multiplicity of solutions for fractional p(x, .)-Kirchhoff-type problems in RN
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    [J]. APPLICABLE ANALYSIS, 2021, 100 (09) : 2029 - 2048
  • [8] EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    [J]. ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 539 - 555
  • [9] ON A NONLOCAL PROBLEM INVOLVING THE FRACTIONAL p(x, .)-LAPLACIAN SATISFYING CERAMI CONDITION
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Shimi, Mohammed
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (10): : 3479 - 3495
  • [10] ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 379 - 389