Experimental Subseasonal-to-Seasonal (S2S) Forecasting of Atmospheric Rivers Over the Western United States

被引:49
作者
DeFlorio, Michael J. [1 ]
Waliser, Duane E. [2 ,3 ]
Ralph, F. Martin [1 ]
Guan, Bin [2 ,3 ]
Goodman, Alexander [2 ]
Gibson, Peter B. [2 ]
Asharaf, Shakeel [2 ,3 ]
Delle Monache, Luca [1 ]
Zhang, Zhenhai [1 ]
Subramanian, Aneesh C. [4 ]
Vitart, Frederic [5 ]
Lin, Hai [6 ]
Kumar, Arun [7 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Western Weather & Water Extremes, La Jolla, CA 92093 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
[3] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA
[4] Univ Colorado Boulder, Boulder, CO USA
[5] European Ctr Medium Range Weather Forecasts, Reading, Berks, England
[6] Environm & Climate Change Canada, Montreal, PQ, Canada
[7] NOAA, Climate Predict Ctr, NCEP, NWS, College Pk, MD USA
基金
美国国家航空航天局;
关键词
PREDICTION; PRECIPITATION; SCALE; INTENSITY; SATELLITE; STRENGTH; IMPACTS; COAST; AREA; MJO;
D O I
10.1029/2019JD031200
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A multimodel evaluation of subseasonal-to-seasonal (S2S) hindcast skill of atmospheric rivers (ARs) out to 4-week lead over the western United States is presented for three operational hindcast systems: European Centre for Medium-Range Weather Forecasts (ECMWF; Europe), National Centers for Environmental Prediction (NCEP; U.S.), and Environment and Canada Climate Change (ECCC; Canada). Ensemble mean biases and Brier Skill Scores are examined for no, moderate, and high levels of AR activity (0, 1-2, and 3-7 AR days/week, respectively). All hindcast systems are more skillful in predicting no and high AR activity relative to moderate activity. There are isolated regions of skill at week-3 over 150-125 degrees W, 25-35 degrees N for the no and high AR activity levels, with larger magnitude and spatial extent of the skill in ECMWF and ECCC compared to NCEP. The spatial pattern of this skill suggests that for high AR activity, a southwest-to-northeast orientation is more predictable at subseasonal lead times than other orientations, and for no AR activity, more skill exists in the subtropical North Pacific, upstream of central and southern California. AR hindcast skill along the western U.S. is most strongly increased in hindcasts initialized during MaddenJulian Oscillation (MJO) Phases 1 and 8, and hindcast skill is substantially decreased over California in hindcasts initialized during MJO Phase 4. Skill modulations in the ECMWF hindcast system conditioned on El Nino-Southern Oscillation phase are weaker than those conditioned on particular MJO phases. This work provides hindcast skill benchmarks and uncertainty quantification for experimental real-time forecasts of AR activity during winters 2019-2021 as part of the S2S Prediction Project Real-time Pilot Initiative in collaboration with the California Department of Water Resources.
引用
收藏
页码:11242 / 11265
页数:24
相关论文
共 58 条
  • [1] [Anonymous], 2011, INT GEOPHYS, DOI DOI 10.1016/B978-0-12-385022-5.00008-7
  • [2] [Anonymous], J CLIMATE
  • [3] Skillful Subseasonal Forecasts of Weekly Tornado and Hail Activity Using the Madden-Julian Oscillation
    Baggett, Cory F.
    Nardi, Kyle M.
    Childs, Samuel J.
    Zito, Samantha N.
    Barnes, Elizabeth A.
    Maloney, Eric D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (22) : 12661 - 12675
  • [4] Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales
    Baggett, Cory F.
    Barnes, Elizabeth A.
    Maloney, Eric D.
    Mundhenk, Bryan D.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (14) : 7528 - 7536
  • [5] Improving Atmospheric River Forecasts With Machine Learning
    Chapman, W. E.
    Subramanian, A. C.
    Delle Monache, L.
    Xie, S. P.
    Ralph, F. M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (17-18) : 10627 - 10635
  • [6] Corringham Thomas William, 2018
  • [7] The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    Dee, D. P.
    Uppala, S. M.
    Simmons, A. J.
    Berrisford, P.
    Poli, P.
    Kobayashi, S.
    Andrae, U.
    Balmaseda, M. A.
    Balsamo, G.
    Bauer, P.
    Bechtold, P.
    Beljaars, A. C. M.
    van de Berg, L.
    Bidlot, J.
    Bormann, N.
    Delsol, C.
    Dragani, R.
    Fuentes, M.
    Geer, A. J.
    Haimberger, L.
    Healy, S. B.
    Hersbach, H.
    Holm, E. V.
    Isaksen, L.
    Kallberg, P.
    Koehler, M.
    Matricardi, M.
    McNally, A. P.
    Monge-Sanz, B. M.
    Morcrette, J. -J.
    Park, B. -K.
    Peubey, C.
    de Rosnay, P.
    Tavolato, C.
    Thepaut, J. -N.
    Vitart, F.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) : 553 - 597
  • [8] Global evaluation of atmospheric river subseasonal prediction skill
    DeFlorio, Michael J.
    Waliser, Duane E.
    Guan, Bin
    Ralph, F. Martin
    Vitart, Frederic
    [J]. CLIMATE DYNAMICS, 2019, 52 (5-6) : 3039 - 3060
  • [9] Global Assessment of Atmospheric River Prediction Skill
    DeFlorio, Michael J.
    Waliser, Duane E.
    Guan, Bin
    Lavers, David A.
    Ralph, F. Martin
    Vitart, Frederic
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2018, 19 (02) : 409 - 426
  • [10] Atmospheric Rivers, Floods and the Water Resources of California
    Dettinger, Michael D.
    Ralph, Fred Martin
    Das, Tapash
    Neiman, Paul J.
    Cayan, Daniel R.
    [J]. WATER, 2011, 3 (02) : 445 - 478