Free stochastic measures via noncrossing partitions

被引:15
作者
Anshelevich, M [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1006/aima.2000.1936
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider free multiple stochastic measures in the combinatorial framework of the lattice of all diagonals of an n-dimensional space. In this free case, one can restrict the analysis to only the noncrossing diagonals. We give definitions of what free multiple stochastic measures are. and calculate them for the free Poisson and free compound Poisson processes. We also derive general combinatorial It (o) over cap -type relationships between free stochastic measures of different orders. These allow us to calculate, for example, free Poisson-Charlier polynomials, which are the orthogonal polynomials with respect to the free Poisson measure. (C) 2000 Academic Press.
引用
收藏
页码:154 / 179
页数:26
相关论文
共 20 条
[1]  
[Anonymous], 1973, PROBABILITY INFORM T
[2]  
[Anonymous], 1992, CRM MONOGRAPH SERIES
[3]   Some properties of crossings and partitions [J].
Biane, P .
DISCRETE MATHEMATICS, 1997, 175 (1-3) :41-53
[4]   Stochastic calculus with respect to free Brownian motion and analysis on Wigner space [J].
Biane, P ;
Speicher, R .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 112 (03) :373-409
[5]   Processes with free increments [J].
Biane, P .
MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (01) :143-174
[6]  
Biane P., 1997, Free Probability Theory, V12, P1
[7]  
Bozejko M, 1996, PAC J MATH, V175, P357
[8]  
FAGNOLA F, 1991, QUANTUM PROBABILITY, V6, P285
[9]   REALIZATION OF FREE WHITE NOISES [J].
GLOCKNER, P ;
SCHURMANN, M ;
SPEICHER, R .
ARCHIV DER MATHEMATIK, 1992, 58 (04) :407-416
[10]  
HAAGERUP U, 1998, ODENSE PREPRINTS, V12