A novel composite multi-layer piezoelectric energy harvester

被引:57
作者
Lu, Qingqing [1 ,3 ]
Liu, Liwu [2 ]
Scarpa, Fabrizio [3 ,4 ]
Leng, Jinsong [1 ]
Liu, Yanju [2 ]
机构
[1] Harbin Inst Technol, Ctr Composite Mat, Sci Pk,POB 3011,2 YiKuang St, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Dept Astronaut Sci & Mech, POB 301,92 West Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
[3] Univ Bristol, Bristol Composites Inst ACCIS, Bristol BS8 1TR, Avon, England
[4] Univ Bristol, CAME, DCRG, Bristol BS8 1TR, Avon, England
基金
中国国家自然科学基金;
关键词
Piezoelectric energy harvesting; Composites beam; Vibration energy harvester; VIBRATION; BEAM; MASS;
D O I
10.1016/j.compstruct.2018.06.024
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A typical linear piezoelectric energy harvester (PEH) is represented by a unimorph or bimorph cantilever beam. To improve the efficiency of linear PEHs, classical strategies involve the increase of the beam length, tapering or adding additional cantilever beams to the free end. In this work we discuss the design of novel type of composite linear multi-layer piezoelectric energy harvester (MPEH). MPEHs here consist of carbon fibre laminates used as conducing layers, and glass fibre laminas as insulating components. We develop first a electromechanical model of the MPEH with parallel connection of PZT layers based on Euler-Bernoulli beam theory. The voltage and beam motion equations are obtained for harmonic excitations at arbitrary frequencies, and the coupling effect can be obtained from the response of the system. A direct comparison between MPEH and PEH configurations is performed both from the simulation (analytical and numerical) and experimental point of views. The experiments agree well with the model developed, and show that a MPEH configuration with the same flexural stiffness of a PEH can generate up to 1.98-2.5 times higher voltage output than a typical piezoelectric energy harvester with the same load resistance.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 31 条
[1]   Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters [J].
Abdelkefi, Abdessattar ;
Barsallo, Nilma .
NONLINEAR DYNAMICS, 2016, 83 (1-2) :41-56
[2]   Piezoelectric energy harvesting from broadband random vibrations [J].
Adhikari, S. ;
Friswell, M. I. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2009, 18 (11)
[3]   Piezoelectric energy harvester composite under dynamic bending with implementation to aircraft wingbox structure [J].
Akbar, M. ;
Curiel-Sosa, J. L. .
COMPOSITE STRUCTURES, 2016, 153 :193-203
[4]   The analysis of piezomagnetoelastic energy harvesters under broadband random excitations [J].
Ali, S. F. ;
Adhikari, S. ;
Friswell, M. I. ;
Narayanan, S. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[5]  
[Anonymous], 1987, IEEE STANDARD PIEZOE
[6]   Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites [J].
Arrieta, A. F. ;
Delpero, T. ;
Bergamini, A. E. ;
Ermanni, P. .
APPLIED PHYSICS LETTERS, 2013, 102 (17)
[7]  
Betts D., 2012, 53 AIAA ASME ASCE AH
[8]   Modeling and experimental verification of multi-modal vibration energy harvesting from plate structures [J].
El-Hebeary, Mohamed M. R. ;
Arafa, Mustafa H. ;
Megahed, Said M. .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 193 :35-47
[9]   On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters [J].
Erturk, A. ;
Inman, D. J. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2008, 19 (11) :1311-1325
[10]   Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling [J].
Erturk, A. ;
Inman, D. J. .
JOURNAL OF SOUND AND VIBRATION, 2011, 330 (10) :2339-2353