TWO-DIMENSIONAL DYNAMICS OF CUBIC MAPS

被引:0
|
作者
Djellit, I. [1 ]
Selmani, W. [1 ]
机构
[1] Univ Badji Mokhtar, Lab Math Dynam & Modelizat, Annaba, Algeria
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2021年 / 45卷 / 03期
关键词
Bifurcation basins; attractors; manifolds; polynomial diffeomorphisms;
D O I
10.46793/KgJMat2103.427D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the global properties of two cubic maps on the plane, we try to explain the basic mechanisms of global bifurcations leading to the creation of nonconnected basins of attraction. It is shown that in some certain conditions the global structure of such systems can be simple. The main results here can be seen as an improvement of the results of stability and bifurcation analysis.
引用
收藏
页码:427 / 438
页数:12
相关论文
共 50 条
  • [1] One-dimensional and two-dimensional dynamics of cubic maps
    Ilhem, Djellit
    Amel, Kara
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2006, 2006
  • [2] On the dynamics of two-dimensional dissipative discontinuous maps
    Perre, Rodrigo M.
    Carneiro, Barbara P.
    Mendez-Bermudez, J. A.
    Leonel, Edson D.
    de Oliveira, Juliano A.
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [3] Chaotic dynamics exhibited by two-dimensional maps
    Awrejcewicz, J.
    Lamarque, C.H.
    Journal of Technical Physics, 37 (3-4):
  • [4] Chaotic dynamics for two-dimensional tent maps
    Pumarino, Antonio
    Angel Rodriguez, Jose
    Carles Tatjer, Joan
    Vigil, Enrique
    NONLINEARITY, 2015, 28 (02) : 407 - 434
  • [5] Bifurcations of Cubic Homoclinic Tangencies in Two-dimensional Symplectic Maps
    Gonchenko, M.
    Gonchenko, S.
    Ovsyannikov, I.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (01) : 41 - 61
  • [6] Poincare maps of impulsed oscillators and two-dimensional dynamics
    Lupini, R
    Lenci, S
    Gardini, L
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1996, 111 (04): : 427 - 454
  • [7] Changes in the dynamics of two-dimensional maps by external forcing
    Rech, Paulo C.
    PHYSICS LETTERS A, 2013, 377 (31-33) : 1881 - 1884
  • [8] A criterion for mixed dynamics in two-dimensional reversible maps
    Turaev, Dmitry
    CHAOS, 2021, 31 (04)
  • [9] Two-dimensional cubic convolution
    Reichenbach, SE
    Geng, F
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (08) : 857 - 865
  • [10] On maps of the two-dimensional sphere
    Shchepin, EV
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (06) : 1218 - 1219