Applied Research and Prospects of Triboelectric Nanogenerators Based on Waste Plastic Bags

被引:2
作者
Yan, Xiaoran [1 ]
Yang, Dongfang [2 ]
Huang, Zhenxing [3 ]
Feng, Xiao [1 ]
Wang, Kai [1 ]
Shan, Bingqiang [1 ]
机构
[1] Qingdao Univ, Sch Elect Engn, Weihai Innovat Res Inst, Qingdao 266000, Peoples R China
[2] Xian Traff Engn Inst, Xian 710300, Peoples R China
[3] Qingdao Haier Washing Machine Co Ltd, Qingdao 26000, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerators; Self-powered systems; Waste plastic bags; TENGs; HYBRID NANOGENERATOR;
D O I
10.20964/2022.12.41
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The increasing production of plastic products and insufficient recycling have caused the problem of white pollution to plague the world, which has severely impacted the ecological environment, marine life, and drainage systems. Moreover, the widespread application of low-consumption electronic devices makes power consumption a non-negligible factor. Therefore, recycling discarded plastic bags as the friction material of triboelectric nanogenerators (TENGs), collecting mechanical energy in daily life and converting it into continuous and stable electricity, can alleviate the two major problems of white pollution and energy consumption simultaneously. Furthermore, self-powered systems constructed using TENGs have enormous potential for driving low-consumption electronics, environmental monitoring, and wearable devices. Accordingly, this paper summarizes the general situation of white pollution, the theoretical origin, working principle, and theoretical model of TENGs, analyzes the feasibility of using waste plastic bags for TENGs, with the application progress of this self-powered sensing system, and looks forward to the future.
引用
收藏
页数:18
相关论文
共 64 条
[1]   Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure [J].
Chen, Huamin ;
Xu, Yun ;
Zhang, Jiushuang ;
Wu, Weitong ;
Song, Guofeng .
NANO ENERGY, 2019, 58 :304-311
[2]  
ChenChen Z.Z., IEEETRANSPOWERELECTR, V2424
[3]   A smart glove with integrated triboelectric nanogenerator for self-powered gesture recognition and language expression [J].
Chiu, Che-Min ;
Chen, Shuo-Wen ;
Pao, Yu-Ping ;
Huang, Ming-Zheng ;
Chan, Shuen-Wen ;
Lin, Zong-Hong .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2019, 20 (01) :964-971
[4]   Universal biomechanical energy harvesting from joint movements using a direction-switchable triboelectric nanogenerator [J].
Cho, Sumin ;
Yun, Yeongcheol ;
Jang, Sunmin ;
Ra, Yoonsang ;
Choi, Jun Hyuk ;
Hwang, Hee Jae ;
Choi, Dukhyun ;
Choi, Dongwhi .
NANO ENERGY, 2020, 71
[5]   Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics [J].
Chu, Hyenwoo ;
Jang, Houk ;
Lee, Yongjun ;
Chae, Youngcheol ;
Ahn, Jong-Hyun .
NANO ENERGY, 2016, 27 :298-305
[6]  
Cui Z., 2022, ENERGYRENEWABLERENEW, V98, P1328
[7]   A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF [J].
Cui, Zhenhua ;
Kang, Le ;
Li, Liwei ;
Wang, Licheng ;
Wang, Kai .
ENERGY, 2022, 259
[8]   Hybrid Methods Using Neural Network and Kalman Filter for the State of Charge Estimation of Lithium-Ion Battery [J].
Cui, Zhenhua ;
Dai, Jiyong ;
Sun, Jianrui ;
Li, Dezhi ;
Wang, Licheng ;
Wang, Kai .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
[9]   Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics [J].
Deng, Jianan ;
Kuang, Xiao ;
Liu, Ruiyuan ;
Ding, Wenbo ;
Wang, Aurelia C. ;
Lai, Ying-Chih ;
Dong, Kai ;
Wen, Zhen ;
Wang, Yaxian ;
Wang, Lili ;
Qi, H. Jerry ;
Zhang, Tong ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2018, 30 (14)
[10]   On energy conservation policies and implementation practices [J].
Dincer, I .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2003, 27 (07) :687-702