Kernel L-Ideals and L-Congruence on a Subclass of Ockham Algebras

被引:3
作者
Alemayehu, Teferi Getachew [1 ]
Engidaw, Derso Abeje [2 ]
Addis, Gezahagne Mulat [2 ]
机构
[1] Debre Berhan Univ, Dept Math, Debre Berhan, Ethiopia
[2] Univ Gondar, Dept Math, Gondar, Ethiopia
关键词
FUZZY CONGRUENCES;
D O I
10.1155/2022/7668044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study L-congruences and their kernel in a subclass K-n,K-0 of the variety of Ockham algebras A. We prove that the class of kernel L-ideals of an Ockham algebra forms a complete Heyting algebra. Moreover, for a given kernel L-ideal xi on A, we obtain the least and the largest L-congruences on A having xi as its kernel.
引用
收藏
页数:9
相关论文
共 30 条
[1]  
Alaba B.A., 2019, J MATH INFORMATICS, V15, P49, DOI [10.22457/jmi.130av15a5, DOI 10.22457/JMI.130AV15A5]
[2]  
Alaba Berhanu Assaye, 2017, ANNALS OF FUZZY MATHEMATICS AND INFORMATICS, V14, P315
[3]   L-Fuzzy Congruences and L-Fuzzy Kernel Ideals in Ockham Algebras [J].
Alemayehu, Teferi Getachew ;
Engidaw, Derso Abeje ;
Addis, Gezahagne Mulat .
JOURNAL OF MATHEMATICS, 2021, 2021
[4]  
[Anonymous], 1981, STUD LOGICA, DOI DOI 10.1007/BF00401657
[5]  
Berman J., 1977, Aequationes Mathematicae, V16, P165, DOI 10.1007/bf01836429
[6]  
Blyth T.S., 2017, CONGRUENCE KERNELS O
[7]  
Blyth T. S., 1994, Ockham Algebras
[8]  
Blyth T. S., 2005, UNIVERSITEX
[9]  
Dutta T.K., 1996, J FUZZY MATH, V4, P737
[10]   On fuzzy congruence of a near-ring module [J].
Dutta, TK ;
Biswas, BK .
FUZZY SETS AND SYSTEMS, 2000, 112 (02) :343-348