Submajorization inequalities for τ - measurable operators

被引:0
作者
Dauitbek, Dostilek [1 ,2 ]
机构
[1] Inst Math & Math Modelling, Alma Ata, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Alma Ata, Kazakhstan
来源
ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015) | 2015年 / 1676卷
关键词
Clarkson inequality; Subadditivity inequality; T measurable operator; von Neumann algebra; Submajorization;
D O I
10.1063/14930465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, tau) be a semi-finite von Neumann algebra and f be a nonnegative function on [0, infinity) with f (0) = 0. Let x1, . . . ,x(n) be tau-measurable operators and let alpha(1), . . . alpha(n) be positive real numbers such that Sigma(j =1) (n) alpha(j) = 1. We have the following results. 1. If g(t) = f root t is convex, then f(broken vertical bar Sigma(n)(j=1) alpha(j)x(j)broken vertical bar + Sigma(1 <= j <= k <= n) f( root alpha j alpha k broken vertical bar xj - xk broken vertical bar less than or similar to Sigma(n)(j=1) alpha jf(broken vertical bar x(j))broken vertical bar) 2. If h(t) = f(root t) is concave, then Sigma(n)(j=1) alpha(j) f(broken vertical bar x(j)broken vertical bar less than or similar to f(broken vertical bar Sigma(n)(j=1) alpha(j)x(j) broken vertical bar) + Sigma(1 <= j <= k <= n) f(root alpha(j)alpha(k) broken vertical bar x(j) - x(k)broken vertical bar).
引用
收藏
页数:4
相关论文
共 7 条
[1]  
Bekjan TN, 2015, POSITIVITY, V19, P341, DOI 10.1007/s11117-014-0300-x
[2]   Submajorization inequalities of τ-measurable operators [J].
Bekjan, Turdebek N. ;
Dauitbek, Dostilek .
INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 :145-149
[3]  
Dauitbek D., 2013, INT J MATH ANAL, V7, P883
[4]   Submajorisation inequalities for convex and concave functions of sums of measurable operators [J].
Dodds, Peter G. ;
Sukochev, Fyodor A. .
POSITIVITY, 2009, 13 (01) :107-124
[5]   GENERALIZED S-NUMBERS OF TAU-MEASURABLE OPERATORS [J].
FACK, T ;
KOSAKI, H .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 123 (02) :269-300
[6]   Non-commutative Clarkson inequalities for n-tuples of operators [J].
Hirzallah, Omar ;
Kittaneh, Fuad .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 60 (03) :369-379
[7]  
Nelson E., 1974, Journal of Functional Analysis, V15, P103, DOI 10.1016/0022-1236(74)90014-7