A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

被引:18
作者
Chen, Huangxin [1 ,2 ,3 ]
Sun, Shuyu [3 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Fujian, Peoples R China
[3] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Computat Transport Phenomena Lab, Thuwal 239556900, Saudi Arabia
关键词
MIXED FINITE-ELEMENT; EFFICIENT NUMERICAL-MODEL; DISCONTINUOUS GALERKIN; REACTIVE TRANSPORT; FLUID-FLOW; INTERFACES;
D O I
10.1007/s00211-016-0851-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart-Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.
引用
收藏
页码:805 / 839
页数:35
相关论文
共 45 条
[1]   A priori and a posteriori analysis of finite volume discretizations of Darcy's equations [J].
Achdou, Y ;
Bernardi, C ;
Coquel, F .
NUMERISCHE MATHEMATIK, 2003, 96 (01) :17-42
[2]  
Adams R.A., 1975, Sobolev Spaces
[3]  
Ainsworth M., 2000, PUR AP M-WI
[4]   A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements [J].
Ainsworth, Mark .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :189-204
[5]  
Alboin C., 2002, Fluid Flow Transp. Porous Media, V295, P13
[6]  
[Anonymous], 1988, SPE Reservoir Eng, DOI DOI 10.2118/15129-PA
[7]   A RESIDUAL-BASED A POSTERIORI ERROR ESTIMATOR FOR THE STOKES-DARCY COUPLED PROBLEM [J].
Babuska, Ivo ;
Gatica, Gabriel N. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) :498-523
[8]   MODELING FLUID-FLOW IN FRACTURED POROUS ROCK MASSES BY FINITE-ELEMENT TECHNIQUES [J].
BACA, RG ;
ARNETT, RC ;
LANGFORD, DW .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1984, 4 (04) :337-348
[9]  
Barenblatt G.E., 1960, J APPL MATH USSR, V24, P12861303, DOI [10.1016/0021-8928(60)90107-6, DOI 10.1016/0021-8928(60)90107-6]
[10]   An a posteriori error analysis of an augmented discontinuous Galerkin formulation for Darcy flow [J].
Barrios, Tomas P. ;
Bustinza, Rommel .
NUMERISCHE MATHEMATIK, 2012, 120 (02) :231-269