Optimization of Annona squamosa oil biodiesel production by using response surface methodology

被引:8
|
作者
Omkaresh, B. R. [1 ]
Suresh, R. [1 ]
Yatish, K. V. [2 ]
机构
[1] Siddaganga Inst Technol, Dept Mech Engn, Tumakuru, Karnataka, India
[2] Siddaganga Inst Technol, Dept Chem, Tumakuru, Karnataka, India
来源
BIOFUELS-UK | 2017年 / 8卷 / 03期
关键词
Annona squamosa oil; biodiesel yield; response surface methodology; central composite rotatable design;
D O I
10.1080/17597269.2016.1231957
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Demand for liquid fuels has become an important challenge for today's scientific research. Fossil fuel resources decline daily. Biodiesel seems to be an environmentally viable fuel and a possible replacement for fossil fuel. Central composite rotatable design of response surface methodology (RSM) was used to determine the optimum conditions for the production of biodiesel from Annona squamosa (Custard apple) oil. Four process parameters were evaluated at five levels (2(4) experimental designs). A total of 30 experiments were designed and conducted to study the effect of catalyst concentration (potassium hydroxide), reaction time, methanol to oil molar ratio, and temperature with respect to biodiesel yield. The 94.29% yield of Annona squamosa oil methyl ester (ASOME/biodiesel) was found to be 6.98:1 molar ratio of methanol to oil, 35.35 minutes reaction time, 1.22% (wt./v) catalyst concentration and 53.27 degrees C temperature. The fuel properties of the biodiesel such as kinematic viscosity, density, flash point, copper corrosion, calorific value, cloud point, pour point, ash content and carbon residue were determined.
引用
收藏
页码:377 / 382
页数:6
相关论文
共 50 条
  • [1] Optimization of biodiesel production from Annona squamosa seed oil using response surface methodology and its characterization
    Yadav, Ashok Kumar
    Vinay
    Singh, Bhupender
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2018, 40 (09) : 1051 - 1059
  • [2] Optimization of scum oil biodiesel production by using response surface methodology
    Yatish, K. V.
    Lalithamba, H. S.
    Suresh, R.
    Arun, S. B.
    Kumar, P. Vinay
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2016, 102 : 667 - 672
  • [3] Optimization of Biodiesel Production from Castor Oil Using Response Surface Methodology
    Jeong, Gwi-Taek
    Park, Don-Hee
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2009, 156 (1-3) : 431 - 441
  • [4] Optimization of Biodiesel Production from Castor Oil Using Response Surface Methodology
    Gwi-Taek Jeong
    Don-Hee Park
    Applied Biochemistry and Biotechnology, 2009, 156 : 1 - 11
  • [5] Optimization of biocatalytic biodiesel production from pomace oil using response surface methodology
    Yucel, Yasin
    FUEL PROCESSING TECHNOLOGY, 2012, 99 : 97 - 102
  • [6] Optimization of biodiesel production from the waste cooking oil using response surface methodology
    Hamze, Hoda
    Akia, Mandana
    Yazdani, Farshad
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2015, 94 : 1 - 10
  • [7] Enhanced biodiesel production from Annona squamosa seed oil using Ni-doped CaO nanocatalyst: Process optimization and reaction kinetics
    Baskar, Gurunathan
    Nithica, Sampath
    Pravin, Ravichandran
    Renuka, Viswanathan
    Tamilarasan, Krishnamurthi
    ENERGY & ENVIRONMENT, 2024,
  • [8] Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology
    Istadi
    Anggoro, Didi Dwi
    Marwoto, Putut
    Suherman
    Nugroho, Bambang Tri
    BULLETIN OF CHEMICAL REACTION ENGINEERING AND CATALYSIS, 2009, 4 (01) : 23 - 31
  • [9] Optimization and Modeling of Process Variables of Biodiesel Production from Marula Oil using Response Surface Methodology
    Enweremadu, Christopher C.
    Rutto, Hilary L.
    JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2015, 37 (02): : 256 - 265
  • [10] Response Surface Methodology Based Process Optimization for Biodiesel Production using Cottonseed Oil: A Comparative Study
    Mumtaz, Muhammad Waseem
    Adnan, Ahmed
    Mukhtar, Hamid
    Anwar, Farooq
    Ahmad, Zahoor
    Qureshi, Fahim Ashraf
    ASIAN JOURNAL OF CHEMISTRY, 2012, 24 (03) : 1075 - 1081