Zinc deficiency differentially affects redox homeostasis of rice genotypes contrasting in ascorbate level

被引:37
作者
Hoeller, Stefanie [1 ]
Meyer, Andreas [1 ]
Frei, Michael [1 ]
机构
[1] Univ Bonn, Inst Crop Sci & Resource Conservat INRES, D-53115 Bonn, Germany
关键词
Antioxidants; Zinc deficiency; Reactive oxygen species; Oryza sativa; Oxidative stress; SUPEROXIDE RADICAL PRODUCTION; OXIDATIVE STRESS; LIPID-PEROXIDATION; VITAMIN-C; ACID; TOLERANCE; ROOTS; BIOSYNTHESIS; LEAVES; ACCUMULATION;
D O I
10.1016/j.jplph.2014.08.012
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Zinc (Zn) deficiency is an important mineral disorder affecting rice production, and is associated with the formation of oxidative stress in plant tissue. In this study we investigated processes of oxidative stress formation as affected by ascorbate (AsA) in two pairs of contrasting rice genotypes: (i) two indica lines differing in field tolerance to Zn deficiency and AsA metabolism, i. e. RIL46 (tolerant) and IR74 (sensitive); (ii) the japonica wild-type Nipponbare (tolerant) and the AsA deficient TOS17 mutant line ND6172 (sensitive) having a 20-30% lower AsA level due to the knockout of an AsA biosynthetic gene (OsGME1). Plants were grown hydroponically under +Zn and -Zn conditions for 21 days and samples were investigated after 7, 14, and 21 days of treatment. Tissue Zn concentrations below 20 mg kg(-1) in the -Zn treatment induced the formation of visible symptoms of Zn deficiency from day 14 in all genotypes, but especially in the sensitive IR74. Significant increases in lipid peroxidation were observed in the leaves of the sensitive genotypes IR74 and ND6172, and in the roots of IR74, but not in the tolerant genotypes. At day 21, the tolerant genotypes RIL46 and Nipponbare had significantly higher AsA levels in both shoots and roots compared to the sensitive lines. Consistently, higher levels of hydrogen peroxide formation in leaves and roots of the sensitive genotypes were detected using staining methods. Differences in foliar hydrogen peroxide formation between IR74 and RIL46 became apparent on day 7 and between ND6172 and Nipponbare on day 14. Similarly, genotypic differences in hydrogen peroxide formation in the roots were seen on day 21. In conclusion, our data demonstrate that Zn deficiency leads to a redox imbalance in roots and shoots prior to the occurrence of visible symptoms, and that the antioxidant AsA plays an important role in maintaining the redox homeostasis under Zn deficiency. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1748 / 1756
页数:9
相关论文
共 53 条
[1]  
Alloway B., 2004, Zinc in soils and crop nutrition
[2]   Soil factors associated with zinc deficiency in crops and humans [J].
Alloway, B. J. .
ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2009, 31 (05) :537-548
[3]   Class III peroxidases in plant defence reactions [J].
Almagro, L. ;
Ros, L. V. Gomez ;
Belchi-Navarro, S. ;
Bru, R. ;
Barcelo, A. Ros ;
Pedreno, M. A. .
JOURNAL OF EXPERIMENTAL BOTANY, 2009, 60 (02) :377-390
[4]  
[Anonymous], 2004, FOOD NUTR BULL
[5]   Evidence for the mechanisms of zinc uptake by rice using isotope fractionation [J].
Arnold, Tim ;
Kirk, Guy J. D. ;
Wissuwa, Matthias ;
Frei, Michael ;
Zhao, Fang-Jie ;
Mason, Thomas F. D. ;
Weiss, Dominik J. .
PLANT CELL AND ENVIRONMENT, 2010, 33 (03) :370-381
[6]   THE PHYSIOLOGICAL-ROLE OF ZINC AS AN ANTIOXIDANT [J].
BRAY, TM ;
BETTGER, WJ .
FREE RADICAL BIOLOGY AND MEDICINE, 1990, 8 (03) :281-291
[7]   Zinc in plants [J].
Broadley, Martin R. ;
White, Philip J. ;
Hammond, John P. ;
Zelko, Ivan ;
Lux, Alexander .
NEW PHYTOLOGIST, 2007, 173 (04) :677-702
[8]   ENHANCED SUPEROXIDE RADICAL PRODUCTION IN ROOTS OF ZINC-DEFICIENT PLANTS [J].
CAKMAK, I ;
MARSCHNER, H .
JOURNAL OF EXPERIMENTAL BOTANY, 1988, 39 (207) :1449-1460
[9]   Tansley review No. 111 - Possible roles of zinc in protecting plant cells from damage by reactive oxygen species [J].
Cakmak, I .
NEW PHYTOLOGIST, 2000, 146 (02) :185-205
[10]   EFFECT OF ZINC NUTRITIONAL-STATUS ON ACTIVITIES OF SUPEROXIDE RADICAL AND HYDROGEN-PEROXIDE SCAVENGING ENZYMES IN BEAN-LEAVES [J].
CAKMAK, I ;
MARSCHNER, H .
PLANT AND SOIL, 1993, 155 :127-130