Pseudospin-driven spin relaxation mechanism in graphene

被引:87
作者
Dinh Van Tuan [1 ,2 ]
Ortmann, Frank [1 ,3 ,4 ,5 ]
Soriano, David [1 ]
Valenzuela, Sergio O. [1 ,6 ]
Roche, Stephan [1 ,6 ]
机构
[1] ICN2 Inst Catala Nanociencia & Nanotecnol, Bellaterra 08193, Barcelona, Spain
[2] Univ Autonoma Barcelona, Dept Phys, Bellaterra 08193, Spain
[3] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[5] Tech Univ Dresden, Dresden Ctr Computat Mat Sci, D-01062 Dresden, Germany
[6] ICREA, Barcelona 08070, Spain
基金
欧洲研究理事会;
关键词
ELECTRICAL DETECTION; TRANSPORT; PRECESSION; VALVE;
D O I
10.1038/NPHYS3083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The prospect of transporting spin information over long distances in graphene, possible because of its small intrinsic spin-orbit coupling (SOC) and vanishing hyperfine interaction, has stimulated intense research exploring spintronics applications. However, measured spin relaxation times are orders of magnitude smaller than initially predicted, while the main physical process for spin dephasing and its charge-density and disorder dependences remain unconvincingly described by conventional mechanisms. Here, we unravel a spin relaxation mechanism for non-magnetic samples that follows from an entanglement between spin and pseudospin driven by random SOC, unique to graphene. The mixing between spin and pseudospin-related Berry's phases results in fast spin dephasing even when approaching the ballistic limit, with increasing relaxation times away from the Dirac point, as observed experimentally. The SOC can be caused by adatoms, ripples or even the substrate, suggesting novel spin manipulation strategies based on the pseudospin degree of freedom.
引用
收藏
页码:857 / 863
页数:7
相关论文
共 33 条
[1]   Toward Wafer Scale Fabrication of Graphene Based Spin Valve Devices [J].
Avsar, Ahmet ;
Yang, Tsung-Yeh ;
Bae, Sukang ;
Balakrishnan, Jayakumar ;
Volmer, Frank ;
Jaiswal, Manu ;
Yi, Zheng ;
Ali, Syed Rizwan ;
Guentherodt, Gernot ;
Hong, Byung Hee ;
Beschoten, Bernd ;
Oezyilmaz, Barbaros .
NANO LETTERS, 2011, 11 (06) :2363-2368
[2]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[3]   Rashba effect in the graphene/Ni(111) system [J].
Dedkov, Yu. S. ;
Fonin, M. ;
Ruediger, U. ;
Laubschat, C. .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[4]   Nanospintronics Based on Magnetologic Gates [J].
Dery, Hanan ;
Wu, Hui ;
Ciftcioglu, Berkehan ;
Huang, Michael ;
Song, Yang ;
Kawakami, Roland ;
Shi, Jing ;
Krivorotov, Ilya ;
Zutic, Igor ;
Sham, Lu J. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (01) :259-262
[5]  
Dlubak B, 2012, NAT PHYS, V8, P557, DOI [10.1038/NPHYS2331, 10.1038/nphys2331]
[6]  
Ertler C., 2009, PHYS REV B, V80
[7]   Spin Transport in High-Quality Suspended Graphene Devices [J].
Guimaraes, Marcos H. D. ;
Veligura, A. ;
Zomer, P. J. ;
Maassen, T. ;
Vera-Marun, I. J. ;
Tombros, N. ;
van Arees, B. J. .
NANO LETTERS, 2012, 12 (07) :3512-3517
[8]   Spin Relaxation in Single-Layer and Bilayer Graphene [J].
Han, Wei ;
Kawakami, R. K. .
PHYSICAL REVIEW LETTERS, 2011, 107 (04)
[9]   Electrical detection of spin precession in a metallic mesoscopic spin valve [J].
Jedema, FJ ;
Heersche, HB ;
Filip, AT ;
Baselmans, JJA ;
van Wees, BJ .
NATURE, 2002, 416 (6882) :713-716
[10]   Chiral tunnelling and the Klein paradox in graphene [J].
Katsnelson, M. I. ;
Novoselov, K. S. ;
Geim, A. K. .
NATURE PHYSICS, 2006, 2 (09) :620-625