Thermal Conductivity of Turbostratic Carbon Nanofiber Networks

被引:10
作者
Bauer, Matthew L. [1 ]
Saltonstall, Christopher B. [1 ]
Leseman, Zayd C. [2 ]
Beechem, Thomas E. [3 ]
Hopkins, Patrick E. [1 ]
Norris, Pamela M. [1 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[2] Univ New Mexico, Dept Mech & Ind Engn, Albuquerque, NM 87131 USA
[3] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2016年 / 138卷 / 06期
基金
美国国家科学基金会;
关键词
heat transfer; carbon fibers; 3 omega technique; thermal conductivity; specific heat capacity; Raman spectroscopy; phonon mean free path; ACCOMMODATION COEFFICIENTS; RAMAN-SPECTRA; FIBERS; DIFFUSION; TRANSPORT; NANOTUBES; FILMS;
D O I
10.1115/1.4032610
中图分类号
O414.1 [热力学];
学科分类号
摘要
Composite material systems composed of a matrix of nanomaterials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. The microstructure of the system dictates the rate, in which heat moves through the material. In this work, air/carbon nanofiber networks are studied to elucidate the system parameters influencing thermal transport. Thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature (HTT) through a bidirectional modification of the 3 omega technique. The nanostructure of the individual fibers is characterized with small angle X-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity of the carbon nanofiber networks varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two-phase composite is used to reconcile low measured thermal conductivities with predictive modeling. Accounting for fiber-to-fiber interactions and the nuanced changes in the composite as pressure is applied is necessary to successfully model thermal transport in system.
引用
收藏
页数:9
相关论文
共 36 条
[1]   THERMAL ACCOMMODATION COEFFICIENTS ON GAS-COVERED TUNGSTEN, NICKEL AND PLATINUM [J].
AMDUR, I ;
GUILDNER, LA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1957, 79 (02) :311-315
[2]   Direct synthesis and characterization of a nonwoven structure comprised of carbon nanofibers [J].
Atwater, Mark A. ;
Mousavi, Arash K. ;
Leseman, Zayd C. ;
Phillips, Jonathan .
CARBON, 2013, 57 :363-370
[3]   The production of carbon nanofibers and thin films on palladium catalysts from ethylene-oxygen mixtures [J].
Atwater, Mark A. ;
Phillips, Jonathan ;
Doorn, Stephen K. ;
Luhrs, Claudia C. ;
Fernandez, Y. ;
Menendez, J. A. ;
Leseman, Zayd C. .
CARBON, 2009, 47 (09) :2269-2280
[4]   General bidirectional thermal characterization via the 3ω technique [J].
Bauer, Matthew L. ;
Norris, Pamela M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (06)
[5]  
Bhattacharyya R., 1980, THERMAL INSULATION P, P272
[6]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[7]   Materials for thermal conduction [J].
Chung, DDL .
APPLIED THERMAL ENGINEERING, 2001, 21 (16) :1593-1605
[8]   Inter-tube thermal conductance in carbon nanotubes arrays and bundles: Effects of contact area and pressure [J].
Evans, William J. ;
Shen, Meng ;
Keblinski, Pawel .
APPLIED PHYSICS LETTERS, 2012, 100 (26)
[10]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107