Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol

被引:121
作者
Farina, Salvatore C. [1 ]
Adams, Peter J. [1 ]
Pandis, Spyros N. [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA
[2] Fdn Res & Technol, Inst Chem Engn & High Temp Chem Proc, Patras, Greece
关键词
GENERAL-CIRCULATION MODEL; SOA FORMATION; PARTICULATE MATTER; CHEMISTRY; TRANSPORT; SULFATE; SIMULATION; OXIDATION; POLLUTION; MASS;
D O I
10.1029/2009JD013046
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The volatility basis set, a computationally efficient framework for the description of organic aerosol partitioning and chemical aging, is implemented in the Goddard Institute for Space Studies General Circulation Model II' for a coupled global circulation and chemical transport model to simulate secondary organic aerosol (SOA) formation. The latest smog chamber information about the yields of anthropogenic and biogenic precursors is incorporated in the model. SOA formation from monoterpenes, sesquiterpenes, isoprene, and anthropogenic precursors is estimated as 17.2, 3.9, 6.5, and 1.6 Tg yr (1), respectively. Reducing water solubility of secondary organic gas from 105 to 103 mol L (1) atm (1) (1 atm = 1.01325 x 10(5) N m (2)) leads to a 90% increase in SOA production and an increase of over 340% in total atmospheric burden, from 0.54 to 2.4 Tg. Increasing the temperature sensitivity of SOA leads to a 30% increase in production, to 38.2 Tg yr(-1). Since the additional SOA is formed at high altitude, where deposition time scales are longer, the average lifetime is doubled from 6.8 to 14.3 days, resulting in a near tripling of atmospheric burden to 1.5 Tg. Chemical aging of anthropogenic SOA by gas-phase reaction of the SOA components with the hydroxyl radical adds an additional 2.7-9.3 Tg yr(-1) of anthropogenic SOA to the above production rates and nearly doubles annual average total SOA burdens. The possibility of such high anthropogenic SOA production rates challenges the assumption that anthropogenic volatile organic compounds are not important SOA precursors on a global scale. Model predictions with and without SOA aging are compared with data from two surface observation networks: the Interagency Monitoring of Protected Visual Environments for the United States and the European Monitoring and Evaluation Programme.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties
    Emanuelsson, E. U.
    Hallquist, M.
    Kristensen, K.
    Glasius, M.
    Bohn, B.
    Fuchs, H.
    Kammer, B.
    Kiendler-Scharr, A.
    Nehr, S.
    Rubach, F.
    Tillmann, R.
    Wahner, A.
    Wu, H. -C.
    Mentel, Th. F.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (05) : 2837 - 2855
  • [42] Secondary organic aerosol formation and source apportionment in Southeast Texas
    Zhang, Hongliang
    Ying, Qi
    ATMOSPHERIC ENVIRONMENT, 2011, 45 (19) : 3217 - 3227
  • [43] The role of low volatile organics on secondary organic aerosol formation
    Kokkola, H.
    Yli-Pirila, P.
    Vesterinen, M.
    Korhonen, H.
    Keskinen, H.
    Romakkaniemi, S.
    Hao, L.
    Kortelainen, A.
    Joutsensaari, J.
    Worsnop, D. R.
    Virtanen, A.
    Lehtinen, K. E. J.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (03) : 1689 - 1700
  • [44] An examination of oxidant amounts on secondary organic aerosol formation and aging
    Chen, Zhong
    Torres, Omar
    ATMOSPHERIC ENVIRONMENT, 2009, 43 (22-23) : 3579 - 3585
  • [45] Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation
    Kim, Hyun
    Kang, Dahyun
    Jung, Heon Young
    Jeon, Jongho
    Lee, Jae Young
    ATMOSPHERE, 2024, 15 (01)
  • [46] Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation
    Pye, Havala O. T.
    Pouliot, George A.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (11) : 6041 - 6047
  • [47] Secondary Organic Aerosol Formation from Semi-Volatile and Intermediate Volatility Organic Compounds in the Fall in Beijing
    Zhang, Yuan
    Fan, Jingsen
    Song, Kai
    Gong, Yuanzheng
    Lv, Daqi
    Wan, Zichao
    Li, Tianyu
    Zhang, Chaoyi
    Lu, Sihua
    Chen, Shiyi
    Zeng, Limin
    Guo, Song
    ATMOSPHERE, 2023, 14 (01)
  • [48] Heterogeneous reactions of methylglyoxal in acidic media: Implications for secondary organic aerosol formation
    Zhao, Jun
    Levitt, Nicholas P.
    Zhang, Renyi
    Chen, Jianmin
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (24) : 7682 - 7687
  • [49] Resolving detailed molecular structures in complex organic mixtures and modeling their secondary organic aerosol formation
    Goodman-Rendall, Kevin A. S.
    Zhuang, Yang R.
    Amirav, Aviv
    Chan, Arthur W. H.
    ATMOSPHERIC ENVIRONMENT, 2016, 128 : 276 - 285
  • [50] Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation
    Krechmer, Jordan E.
    Coggon, Matthew M.
    Massoli, Paola
    Nguyen, Tran B.
    Crounse, John D.
    Hu, Weiwei
    Day, Douglas A.
    Tyndall, Geoffrey S.
    Henze, Daven K.
    Rivera-Rios, Jean C.
    Nowak, John B.
    Kimmel, Joel R.
    Mauldin, Roy L., III
    Stark, Harald
    Jayne, John T.
    Sipila, Mikko
    Junninen, Heikki
    St. Clair, Jason M.
    Zhang, Xuan
    Feiner, Philip A.
    Zhang, Li
    Miller, David O.
    Brune, William H.
    Keutsch, Frank N.
    Wennberg, Paul O.
    Seinfeld, John H.
    Worsnop, Douglas R.
    Jimenez, Jose L.
    Canagaratna, Manjula R.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (17) : 10330 - 10339