Towards a nanoscale view of fungal surfaces

被引:22
作者
Dague, Etienne [1 ]
Gilbert, Yarn [1 ]
Verbelen, Claire [1 ]
Andre, Guillaume [1 ]
Alsteens, David [1 ]
Dufrene, Yves F. [1 ]
机构
[1] Univ Catholique Louvain, Unite Chim Interfaces, B-1348 Louvain, Belgium
关键词
atomic force microscopy; cell surfaces; molecular recognition; nanoscale imaging; single molecules; surface properties;
D O I
10.1002/yea.1445
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the past years, atomic force microscopy (AFM) has offered novel possibilities for exploring the nanoscale surface properties of fungal cells. For the first time, AFM imaging enables investigators to visualize fine surface structures, such as rodlets, directly on native hydrated cells. Moreover, real-time imaging can be used to follow cell surface dynamics during cell growth and to monitor the effect of molecules such as enzymes and drugs. In fact, AFM is much more than a microscope in that when used in the force spectroscopy mode, it allows measurement of physicochemical properties such as surface energy and surface charge, to probe the elasticity of cell wall components and macromolecules, and to analyse the force and localization of molecular recognition events. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:229 / 237
页数:9
相关论文
共 29 条
[1]   Probing microbial cell surface charges by atomic force microscopy [J].
Ahimou, F ;
Denis, FA ;
Touhami, A ;
Dufrêne, YF .
LANGMUIR, 2002, 18 (25) :9937-9941
[2]   Real-time imaging of the surface topography of living yeast cells by atomic force microscopy [J].
Ahimou, FO ;
Touhami, A ;
Dufrêne, YF .
YEAST, 2003, 20 (01) :25-30
[3]   Discrete interactions in cell adhesion measured by single-molecule force spectroscopy [J].
Benoit, M ;
Gabriel, D ;
Gerisch, G ;
Gaub, HE .
NATURE CELL BIOLOGY, 2000, 2 (06) :313-317
[4]   SURFACE-LAYERS OF BACTERIA [J].
BEVERIDGE, TJ ;
GRAHAM, LL .
MICROBIOLOGICAL REVIEWS, 1991, 55 (04) :684-705
[5]   Structures of gram-negative cell walls and their derived membrane vesicles [J].
Beveridge, TJ .
JOURNAL OF BACTERIOLOGY, 1999, 181 (16) :4725-4733
[6]   Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae [J].
Bowen, WR ;
Lovitt, RW ;
Wright, CJ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 237 (01) :54-61
[7]   Probing bacterial electrosteric interactions using atomic force microscopy [J].
Camesano, TA ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (16) :3354-3362
[8]  
Dufrene YF, 1999, J BACTERIOL, V181, P5350
[9]   Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes [J].
Dufrêne, YF .
BIOPHYSICAL JOURNAL, 2000, 78 (06) :3286-3291
[10]   Using nanotechniques to explore microbial surfaces [J].
Dufrêne, YF .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (06) :451-460