Interference of identical particles and the quantum work distribution

被引:31
作者
Gong, Zongping [1 ]
Deffner, Sebastian [2 ,3 ,4 ,5 ]
Quan, H. T. [1 ,6 ]
机构
[1] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[2] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[4] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[6] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 06期
基金
美国国家科学基金会;
关键词
FREE-ENERGY DIFFERENCES; INFINITE SQUARE-WELL; NONEQUILIBRIUM MEASUREMENTS; FLUCTUATION THEOREM; 2ND LAW; DYNAMICAL ENSEMBLES; JARZYNSKI EQUALITY; ENTROPY PRODUCTION; THERMODYNAMICS; STATISTICS;
D O I
10.1103/PhysRevE.90.062121
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Quantum-mechanical particles in a confining potential interfere with each other while undergoing thermodynamic processes far from thermal equilibrium. By evaluating the corresponding transition probabilities between many-particle eigenstates we obtain the quantum work distribution function for identical bosons and fermions, which we compare with the case of distinguishable particles. We find that the quantum work distributions for bosons and fermions significantly differ at low temperatures, while, as expected, at high temperatures the work distributions converge to the classical expression. These findings are illustrated with two analytically solvable examples, namely the time-dependent infinite square well and the parametric harmonic oscillator.
引用
收藏
页数:15
相关论文
共 89 条
[1]   Single-Ion Heat Engine at Maximum Power [J].
Abah, O. ;
Ronagel, J. ;
Jacob, G. ;
Deffner, S. ;
Schmidt-Kaler, F. ;
Singer, K. ;
Lutz, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (20)
[2]   Efficiency of heat engines coupled to nonequilibrium reservoirs [J].
Abah, Obinna ;
Lutz, Eric .
EPL, 2014, 106 (02)
[3]  
An S., 2014, ARXIV14094885
[4]  
[Anonymous], ARXIVCONDMAT0007360V
[5]  
[Anonymous], 1964, APPL MATH SERIES
[6]  
[Anonymous], 2013, THEORY COMPUT, DOI DOI 10.4086/toc.2013.v009a004
[7]  
[Anonymous], ARXIV08124955
[8]  
[Anonymous], 1968, QUANTUM MECH
[9]  
[Anonymous], ARXIVCONDMAT0009244V
[10]   Experimental Reconstruction of Work Distribution and Study of Fluctuation Relations in a Closed Quantum System [J].
Batalhao, Tiago B. ;
Souza, Alexandre M. ;
Mazzola, Laura ;
Auccaise, Ruben ;
Sarthour, Roberto S. ;
Oliveira, Ivan S. ;
Goold, John ;
De Chiara, Gabriele ;
Paternostro, Mauro ;
Serra, Roberto M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)