Some remarks on isoperimetry of Gaussian type

被引:38
作者
Barthe, F [1 ]
Maurey, B [1 ]
机构
[1] Univ Marne Vallee, Equipe Anal & Math Appl, ESA 8050, F-77454 Marne La Vallee 2, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2000年 / 36卷 / 04期
关键词
isoperimetry; Gaussian measure;
D O I
10.1016/S0246-0203(00)00131-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a martingale proof of Gaussian isoperimetry, which also contains Bobkov's inequality on the two-point space and its extension to non symmetric Bernoulli measures. We derive the equivalence of different forms of Gaussian type isoperimetry. This allows us to prove a sharp form of Bobkov's inequality for the sphere and to get isoperimetric estimates for the unit cube. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:419 / 434
页数:16
相关论文
共 19 条
[1]   Levy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator [J].
Bakry, D ;
Ledoux, M .
INVENTIONES MATHEMATICAE, 1996, 123 (02) :259-281
[2]  
BARTHE F, EXTREMAL PROPERTIES
[3]   A functional form of the isoperimetric inequality for the Gaussian measure [J].
Bobkov, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (01) :39-49
[4]  
Bobkov SG, 1997, ANN PROBAB, V25, P206
[5]  
Bobkov SG, 1997, ANN PROBAB, V25, P184
[6]   Discrete isoperimetric and Poincare-type inequalities [J].
Bobkov, SG ;
Götze, F .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 114 (02) :245-277
[7]   On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures [J].
Bobkov, SG ;
Ledoux, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (02) :347-365
[8]  
BOBKOV SG, IN PRESS ANN PROBAB
[9]   BRUNN-MINKOWSKI INEQUALITY IN GAUSS SPACE [J].
BORELL, C .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :207-216
[10]  
CAPITAINE M, 1997, ELECT COMM PROBAB, V2