Unstructured Tetrahedral Mesh Generation Technology

被引:17
作者
Danilov, A. A. [1 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
基金
俄罗斯基础研究基金会;
关键词
advancing front technique; constrained Delaunay triangulations mesh generation; ARBITRARY POLYHEDRON;
D O I
10.1134/S0965542510010124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a robust unstructured tetrahedral mesh generation technology. This technology is a combination of boundary discretization methods, an advancing front technique and a Delaunay-based mesh generation technique. For boundary mesh generation we propose four different approaches using analytical boundary parameterization, interface with CAD systems, surface mesh refinement, and constructive solid geometry. These methods allow us to build a flexible grid generation technology with a user friendly interface.
引用
收藏
页码:139 / 156
页数:18
相关论文
共 18 条
[1]  
AGOUZAL A, 1999, E W J NUMER MATH, V7, P223
[2]  
Borouchaki H., 1995, 4th Int. Meshing Roundtable, P3
[3]   Recent progress in robust and quality Delaunay mesh generation [J].
Du, Qiang ;
Wang, Desheng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 195 (1-2) :8-23
[4]  
GARANZHA V, 2001, P MIN INT C OFEA, P61
[5]   Simplicial mesh of an arbitrary polyhedron [J].
George, PL ;
Borouchaki, H .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) :735-740
[6]   'Ultimate' robustness in meshing an arbitrary polyhedron [J].
George, PL ;
Borouchaki, H ;
Saltel, E .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (07) :1061-1089
[7]  
GEORGE PL, 1998, APPL FINITE ELEMENTS
[8]  
Ito Y., 2004, 13 INT MESHING ROUND, P95
[9]  
IVANENKO SA, 2003, COMP MATH MATH PHYS+, V42, P830
[10]  
JOE B, 1992, P 13 IMACS WORLD C, P215