A nonradial bifurcation result with applications to supercritical problems

被引:1
作者
Amadori, Anna Lisa [1 ]
Gladiali, Francesca [2 ]
机构
[1] Univ Napoli Parthenope, Dipartimento Sci Applicate, Ctr Direz Napoli, Isola C4, I-80143 Naples, Italy
[2] Univ Sassari, Matemat & Fis, Polcoming, Via Piandanna 4, I-07100 Sassari, Italy
关键词
Semilinear elliptic equations; Bifurcation; Nonradial solutions; SEMILINEAR ELLIPTIC-EQUATIONS; SYMMETRY-BREAKING; HENON EQUATION; POSITIVE SOLUTIONS; UNBOUNDED-DOMAINS; RADIAL SOLUTIONS; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.jmaa.2016.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the problem {-Delta u = vertical bar x vertical bar F-alpha(u) in R-N u > 0 in R-N where alpha > 0 and N >= 3. Under some assumptions on F we deduce the existence of nonradial solutions which bifurcate from the radial one when alpha is an even integer. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:106 / 126
页数:21
相关论文
共 24 条
[1]  
Amadori AL, 2014, ADV DIFFERENTIAL EQU, V19, P755
[2]  
[Anonymous], CAMBRIDGE STUD ADV M
[3]  
[Anonymous], 1964, Topological Methods in the Theory of Nonlinear Integral Equations
[4]   Non radial solutions for a non homogeneous Henon equation [J].
Badiale, M. ;
Cappa, G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 109 :45-55
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]  
Damascelli L, 2004, REV MAT IBEROAM, V20, P67
[7]  
Dancer E. N., ARXIV150900656
[8]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[9]  
Gladiali F., 2016, COMMUN CONT IN PRESS
[10]  
Gladiali F., PREPRINT