Analysis and application of the interpolating element-free Galerkin method for extended Fisher-Kolmogorov equation which arises in brain tumor dynamics modeling

被引:8
作者
Ilati, Mohammad [1 ]
机构
[1] Sahand Univ Technol, Fac Basic Sci, Dept Appl Math, Tabriz, Iran
关键词
Extended Fisher-Kolmogorov equation; Interpolating element-free Galerkin method; Interpolating moving least squares method; Error estimate; Brain tumor dynamics modeling; LOW-GRADE GLIOMAS; FRONT PROPAGATION; DIFFUSION;
D O I
10.1007/s11075-019-00823-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the interpolating element-free Galerkin method is applied for solving the nonlinear biharmonic extended Fisher-Kolmogorov equation which arises in brain tumor dynamics modeling. At first, a finite difference formula is utilized for obtaining a time-discrete scheme. The unconditional stability and convergence of the time-discrete method are proved by the energy method. Then, we use the interpolating element-free Galerkin method to approximate the spatial derivatives. An error analysis of the interpolating element-free Galerkin method is proposed for this nonlinear equation. Moreover, this method is compared with some other meshless local weak-form techniques. The main aim of this paper is to show that the interpolating element-free Galerkin is a suitable technique for solving the nonlinear fourth-order partial differential equations especially extended Fisher-Kolmogorov equation. The numerical experiments confirm the analytical results and show the good efficiency of the interpolating element-free Galerkin method for solving this nonlinear biharmonic equation.
引用
收藏
页码:485 / 502
页数:18
相关论文
共 39 条
[1]   VORTEX-FRONT PROPAGATION IN ROTATING COUETTE-TAYLOR FLOW [J].
AHLERS, G ;
CANNELL, DS .
PHYSICAL REVIEW LETTERS, 1983, 50 (20) :1583-1586
[2]  
[Anonymous], 2005, INTRO MESHFREE METHO, DOI [DOI 10.1017/CBO9781107415324.004, DOI 10.1007/1-4020-3468-7]
[3]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[4]   Effective particle methods for Fisher-Kolmogorov equations: Theory and applications to brain tumor dynamics [J].
Belmonte-Beitia, Juan ;
Calvo, Gabriel F. ;
Perez-Garcia, Victor M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :3267-3283
[5]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[6]   Error estimates for the finite point method [J].
Cheng, Rongjun ;
Cheng, Yumin .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (06) :884-898
[7]   A novel interpolating element-free Galerkin (IEFG) method for two-dimensional elastoplasticity [J].
Cheng, Y. M. ;
Bai, F. N. ;
Peng, M. J. .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) :5187-5197
[8]   Analyzing nonlinear large deformation with an improved element-free Galerkin method via the interpolating moving least-squares method [J].
Cheng, Yumin ;
Bai, Funong ;
Liu, Chao ;
Peng, Miaojuan .
INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2016, 5 (04)
[9]   NATURE OF SPATIAL CHAOS [J].
COULLET, P ;
ELPHICK, C ;
REPAUX, D .
PHYSICAL REVIEW LETTERS, 1987, 58 (05) :431-434
[10]   Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation [J].
Danumjaya, P ;
Pani, AK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 174 (01) :101-117