Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism

被引:47
|
作者
Li, Qing'an [1 ]
Kamada, Yasunari [2 ]
Maeda, Takao [2 ]
Murata, Junsuke [2 ]
Iida, Kohei [2 ]
Okumura, Yuta [2 ]
机构
[1] Mie Univ, Div Syst Engn, 1577 Kurimamachiya Cho, Tsu, Mie 5148507, Japan
[2] Mie Univ, Div Mech Engn, 1577 Kurimamachiya Cho, Tsu, Mie 5148507, Japan
关键词
Floating offshore wind turbine; Aerodynamic forces; Cyclic pitch mechanism; Six-component balance; Wind tunnel experiment; POWER; STORAGE; MOTION; LOADS; WAKE;
D O I
10.1016/j.energy.2016.01.049
中图分类号
O414.1 [热力学];
学科分类号
摘要
Wind turbines mounted on floating platforms are subjected to completely different and soft foundation properties, rather than onshore wind turbines. Due to the flexibility of their mooring systems, floating offshore wind turbines are susceptible to large oscillations such as aerodynamic force of the wind and hydrodynamic force of the wave, which may compromise their performance and structural stability. This paper focuses on the evaluation of aerodynamic forces depending on suppressing undesired turbine's motion by a rotor thrust control which is controlled by pitch changes with wind tunnel experiments. In this research, the aerodynamic forces of wind turbine are tested at two kinds of pitch control system: steady pitch control and cyclic pitch control. The rotational speed of rotor is controlled by a variable speed generator, which can be measured by the power coefficient. Moment and force acts on model wind turbine are examined by a six-component balance. From cyclic pitch testing, the direction and magnitude of moment can be arbitrarily controlled by cyclic pitch control. Moreover, the fluctuations of thrust coefficient can be controlled by collective pitch control. The results of this analysis will help resolve the fundamental design of suppressing undesired turbine's motion by cyclic pitch control. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:20 / 31
页数:12
相关论文
共 50 条
  • [21] An experimental study on the aerodynamic loads of a floating offshore wind turbine under imposed motions
    Taruffi, Federico
    Novais, Felipe
    Vire, Axelle
    WIND ENERGY SCIENCE, 2024, 9 (02) : 343 - 358
  • [22] Study on the Aerodynamic Performance of Floating Offshore Wind Turbine Considering the Tower Shadow Effect
    Hu, Danmei
    Deng, Liwei
    Li Zeng
    PROCESSES, 2021, 9 (06)
  • [23] Position Control of an Offshore Wind Turbine with a Semi-submersible Floating Platform Using the Aerodynamic Force
    Han, Chenlu
    Nagamune, Ryozo
    2016 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2016,
  • [24] Nonlinear Pitch Decay Motion of a Floating Offshore Wind Turbine Structure
    Thiagarajan, K. P.
    Urbina, R.
    Hsu, W.
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (01):
  • [25] Influence of different pitch control on floating characteristics of offshore wind turbine
    Yu W.
    Ding Q.
    Li C.
    Hao W.
    Zhou H.
    Zhu H.
    Han Z.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (12): : 191 - 198
  • [26] Collective pitch sliding mode control of floating offshore wind turbine
    Li, Shuzhen
    Li, Xian
    Li, Ao
    Yi, Jia
    Huang, Guanghao
    Hong, Keum-Shik
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1829 - 1834
  • [27] Equivalent Aerodynamic Design of Blade for Offshore Floating Wind Turbine Model
    Lin, Jiahuan
    Duan, Huawei
    Xu, Baoming
    Wang, Yangwei
    Zhang, Jun
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (02)
  • [28] An Aerodynamic Modelling Methodology for an Offshore Floating Vertical Axis Wind Turbine
    Hand, Brian
    Cashman, Andrew
    Kelly, Ger
    2015 INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2015, : 273 - 277
  • [29] Effect of the Coupled Pitch-Yaw Motion on the Unsteady Aerodynamic Performance and Structural Response of a Floating Offshore Wind Turbine
    Chen, Ziwen
    Wang, Xiaodong
    Kang, Shun
    PROCESSES, 2021, 9 (02) : 1 - 22
  • [30] A CFD study of coupled aerodynamic-hydrodynamic loads on a semisubmersible floating offshore wind turbine
    Thanh Toan Tran
    Kim, Dong-Hyun
    WIND ENERGY, 2018, 21 (01) : 70 - 85