Existence of multiple solutions for a class of (p, q)-Laplacian systems

被引:6
作者
Afrouzi, G. A. [1 ]
Mahdavi, S. [1 ]
Naghizadeh, Z. [1 ]
机构
[1] Univ Mazandaran, Dept Math, Fac Basic Sci, Babol Sar, Iran
关键词
(p; q)-Laplacian systems; Ekeland's variational principle; Mountain pass theorem; Saddle point theorem; LINEAR ELLIPTIC-SYSTEMS; RESONANCE;
D O I
10.1016/j.na.2009.10.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence and Multiplicity of solutions for some (p, q)-Laplacian systems. We will show how the multiplicity of solutions change as lambda and mu vary. The results are proved by Ekeland's variational principle, the Mountain pass theorem and the Saddle point theorem. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2243 / 2250
页数:8
相关论文
共 16 条
[1]  
Allegretto W., 1995, FUNKC EKVACIOJ-SER I, V38, P233
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[4]  
BENSEDIK A, 2002, ELECT J DIFFERENTIAL, P116
[5]   Some remarks on a system of quasilinear elliptic equations [J].
Boccardo, L ;
de Figueiredo, DG .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (03) :309-323
[6]  
COSTA DG, 1994, ELECT J DIFFERENTIAL, V1194, P1
[7]  
De Figueiredo DG, 1998, NONLINEAR FUNCTIONAL ANALYSIS AND APPLICATIONS TO DIFFERENTIAL EQUATIONS, PROCEEDINGS OF THE SECOND SCHOOL, P122
[8]  
De Napoli P., 2002, Abstr. Appl. Anal, V7, P155
[9]   Quasilinear elliptic systems with critical Sobolev exponents in RN [J].
Djellit, Ali ;
Tas, Saadia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (07) :1485-1497
[10]   Bifurcation problems for the p-Laplacian in R(N) [J].
Drabek, P ;
Huang, YX .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (01) :171-188