Existence and trend to equilibrium of weak solutions of the Boltzmann equation

被引:0
作者
Cercignani, C [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Boltzmann equation; slab; diffusive boundary conditions; global weak solution; trend to a Maxwellian;
D O I
10.1016/S0362-546X(96)00121-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:3749 / 3761
页数:13
相关论文
共 25 条
[1]  
[Anonymous], THEORY APPL BOLTZMAN
[2]   ON DIFFUSE REFLECTION AT THE BOUNDARY FOR THE BOLTZMANN-EQUATION AND RELATED EQUATIONS [J].
ARKERYD, L ;
MASLOVA, N .
JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (5-6) :1051-1077
[3]   MEASURE SOLUTIONS OF THE STEADY BOLTZMANN-EQUATION IN A SLAB [J].
ARKERYD, L ;
CERCIGNANI, C ;
ILLNER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :285-296
[5]   A GLOBAL EXISTENCE THEOREM FOR THE INITIAL-BOUNDARY-VALUE PROBLEM FOR THE BOLTZMANN-EQUATION WHEN THE BOUNDARIES ARE NOT ISOTHERMAL [J].
ARKERYD, L ;
CERCIGNANI, C .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 125 (03) :271-287
[6]  
ARKERYD L, 1992, STUD APPL MATH, V87, P283
[7]  
ARKERYD L, 1994, 406 U NIC
[8]  
Boltzmann L., 1876, Sitzungsberichte der Akademie der Wissenschaften, V74, P503
[9]  
Boltzmann L., 1875, Sitzungsber. Acad. Wiss. Wien, V72, P427
[10]  
BONY M, 1991, ADV KINETIC THEORY C, P81