Enhanced Thermoelectric Performance of Conjugated Polymer/CNT Nanocomposites by Modulating the Potential Barrier Difference between Conjugated Polymer and CNT

被引:35
作者
Kang, Young Hun [1 ]
Lee, Un-Hak [1 ]
Jung, In Hwan [2 ]
Yoon, Sung Cheol [1 ]
Cho, Song Yun [1 ]
机构
[1] Korea Res Inst Chem Technol, Div Adv Mat, 141 Gajeong Ro, Daejeon 34114, South Korea
[2] Kookmin Univ, Dept Chem, 77 Jeongneung Ro, Seoul 02707, South Korea
关键词
small-bundled single-walled carbon nanotube; conjugated polymer; nanocomposite; carrier filtering effect; molecular orientation; thermoelectric property; thermoelectric generator; DIKETOPYRROLOPYRROLE; FILMS;
D O I
10.1021/acsaelm.9b00224
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Small-bundled single-walled carbon nanotube (SSWCNT) nanocomposite films with two different conjugated polymers were facilely prepared by using a micronizing mill. The influence of the difference in the electronic structures and molecular orientations of poly(3-hexylthiophene) (P3HT) and poly(diketopyrrolopyrrole-selenophene) (PDPPSe) on the thermoelectric properties of polymer/SSWCNT nanocomposites was systematically investigated. Planar-shaped PDPPSe with stronger pi-pi interaction, compared to that in P3HT, naturally forms a dense surface microstructure with SSWCNT by easily wrapping the SSWCNT surface. Furthermore, the inherent crystalline orientation of PDPPSe effectively enhances the electrical conductivity of the SSWCNT nanocomposite film by inducing the alignment of SSWCNT bundles in an in-plane direction. In the electronic structure of the composite, PDPPSe lowers the interfacial energy barrier between the polymer and SSWCNT to induce the carrier-filtering effect, which can facilitate charge transport from the polymer to SSWCNT. The PDPPSe/SSWCNT nanocomposite exhibits a considerably increased electrical conductivity of 537.7 S cm(-1) and a higher Seebeck coefficient of 62.5 mu V K-1 compared to those of the P3HT/SSWCNT nanocomposite. The optimized power factor of the PDPPSe/SSWCNT nanocomposite is 210 mu W m(-1) K-2, which is about 10 times higher than that of the P3HT/SSWCNT nanocomposite. The thermoelectric generator fabricated from PDPPSe/SSWCNT displays a high open-circuit voltage (V-oc) of 8.5 mV and short-circuit current (I-sc) of 162.8 mu A, resulting in a maximum output power of 0.35 mu W at Delta T = 10 degrees C.
引用
收藏
页码:1282 / 1289
页数:15
相关论文
共 31 条
[1]   Preparation of Highly Stable Black Phosphorus by Gold Decoration for High-Performance Thermoelectric Generators [J].
An, Cheng Jin ;
Kang, Young Hun ;
Lee, Changjin ;
Cho, Song Yun .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (28)
[2]   High-performance flexible thermoelectric generator by control of electronic structure of directly spun carbon nanotube webs with various molecular dopants [J].
An, Cheng Jin ;
Kang, Young Hun ;
Song, Hyeonjun ;
Jeong, Youngjin ;
Cho, Song Yun .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (30) :15631-15639
[3]   Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes [J].
Bao, W. S. ;
Meguid, S. A. ;
Zhu, Z. H. ;
Meguid, M. J. .
NANOTECHNOLOGY, 2011, 22 (48)
[4]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/nmat3012, 10.1038/NMAT3012]
[5]   Recent advances in organic polymer thermoelectric composites [J].
Chen, Guangming ;
Xu, Wei ;
Zhu, Daoben .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (18) :4350-4360
[6]   High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO3 Nanocomposite Micropillars for Self-Powered Flexible Sensors [J].
Chen, Xiaoliang ;
Li, Xiangming ;
Shao, Jinyou ;
An, Ningli ;
Tian, Hongmiao ;
Wang, Chao ;
Han, Tianyi ;
Wang, Li ;
Lu, Bingheng .
SMALL, 2017, 13 (23)
[7]   High-Performance Thermoelectric Paper Based on Double Carrier-Filtering Processes at Nanowire Heterojunctions [J].
Choi, Jaeyoo ;
Lee, Jang Yeol ;
Lee, Sang-Soo ;
Park, Chong Rae ;
Kim, Heesuk .
ADVANCED ENERGY MATERIALS, 2016, 6 (09)
[8]   The chemical and structural origin of efficient p-type doping in P3HT [J].
Duong, Duc T. ;
Wang, Chenchen ;
Antono, Erin ;
Toney, Michael F. ;
Salleo, Alberto .
ORGANIC ELECTRONICS, 2013, 14 (05) :1330-1336
[9]  
Erden F, 2018, PHYS CHEM CHEM PHYS, V20, P9411, DOI [10.1039/c7cp07896j, 10.1039/C7CP07896J]
[10]   Towards high-performance polymer-based thermoelectric materials [J].
He, Ming ;
Qiu, Feng ;
Lin, Zhiqun .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (05) :1352-1361