Non-Abelian Poisson manifolds from D-branes

被引:0
作者
Isidro, JM
机构
[1] UVEG, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
Poisson brackets; D-branes;
D O I
10.1142/S0217732304015671
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Superimposed D-branes have matrix-valued functions as their transverse coordinates, since the latter take values in the Lie algebra of the gauge group inside the stack of coincident branes. This leads to considering a classical dynamics where the multiplication law for coordinates and/or momenta, being given by matrix multiplication, is non-Abelian. Quantization further introduces noncommutativity as a deformation in powers of Planck's constant h. Given an arbitrary simple Lie algebra g and an arbitrary Poisson manifold M, both finite-dimensional, we define a corresponding C*-algebra that can be regarded as a non-Abelian Poisson manifold. The latter provides a natural framework for a matrix-valued classical dynamics.
引用
收藏
页码:2541 / 2548
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 1999, LONDON MATH SOC LECT
[2]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[3]   The concept of a noncommutative Riemann surface [J].
Bertoldi, G ;
Isidro, JM ;
Matone, M ;
Pasti, P .
PHYSICS LETTERS B, 2000, 484 (3-4) :323-332
[4]   M-theory and Seiberg-Witten curves: orthogonal and symplectic groups [J].
Brandhuber, A ;
Sonnenschein, J ;
Theisen, S ;
Yankielowicz, S .
NUCLEAR PHYSICS B, 1997, 504 (1-2) :175-188
[5]  
Connes A, 1998, J HIGH ENERGY PHYS
[6]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[7]  
FATOLLAHI A, HEPPH0306150
[8]  
FIORESI R, MATHQA0406196
[9]  
Gracia-Bondia J. M., 2000, ELEMENTS NONCOMMUTAT
[10]   Twisted K-theory in g>1 from D-branes [J].
Isidro, JM .
JOURNAL OF GEOMETRY AND PHYSICS, 2002, 42 (04) :325-341