Hyperbolic PDE and Lorentzian geometry

被引:0
作者
Christodoulou, Demetrios [1 ]
机构
[1] ETH Zentrum, HG G 48-2, CH-8092 Zurich, Switzerland
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I | 2014年
关键词
Hyperbolic partial differential equations; Lorentzian geometry; general relativity; fluid mechanics; CAUCHY-PROBLEM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent developments are discussed which deepen our understanding of the relationship between hyperbolic p.d.e. and Lorentzian geometry. These developments are connected with progress in the analysis of the Einstein equations of general relativity and in the analysis of the Euler equations of the mechanics of compressible fluids.
引用
收藏
页码:259 / 282
页数:24
相关论文
共 20 条
[1]   Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions - II [J].
Alinhac, S .
ACTA MATHEMATICA, 1999, 182 (01) :1-23
[2]  
ALINHAC S, 1995, PROG NONLINEAR DIFF, V17
[3]  
[Anonymous], 2007, EMS MONOGRAPHS MATH
[4]  
BEL L, 1959, CR HEBD ACAD SCI, V248, P1297
[5]  
Bieri L., 2009, STUDIES ADV MATH, V45
[6]   GLOBAL ASPECTS OF CAUCHY PROBLEM IN GENERAL RELATIVITY [J].
CHOQUETBRUHAT, Y ;
GEROCH, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 14 (04) :329-+
[7]   NONLINEAR NATURE OF GRAVITATION AND GRAVITATIONAL-WAVE EXPERIMENTS [J].
CHRISTODOULOU, D .
PHYSICAL REVIEW LETTERS, 1991, 67 (12) :1486-1489
[8]  
Christodoulou D., 2009, EMS MONOGRAPHS MATH
[9]  
Christodoulou D., 2014, COMPRESSIBLE FLOW EU
[10]  
CHRISTODOULOU D, 1993, PRINCETON MATH SERIE, V41