Recursive Similarity-Based Algorithm for Deep Learning

被引:0
作者
Maszczyk, Tomasz [1 ]
Duch, Wlodzislaw [1 ]
机构
[1] Nicolaus Copernicus Univ, Dept Informat, PL-87100 Torun, Poland
来源
NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III | 2012年 / 7665卷
关键词
similarity-based learning; deep networks; machine learning; k nearest neighbors;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recursive Similarity-Based Learning algorithm (RSBL) follows the deep learning idea, exploiting similarity-based methodology to recursively generate new features. Each transformation layer is generated separately, using as inputs information from all previous layers, and as new features similarity to the k nearest neighbors scaled using Gaussian kernels. In the feature space created in this way results of various types of classifiers, including linear discrimination and distance-based methods, are significantly improved. As an illustrative example a few non-trivial benchmark datasets from the UCI Machine Learning Repository are analyzed.
引用
收藏
页码:390 / 397
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 2007, Uci machine learning repository
[2]   Space-Time Tradeoffs for Approximate Nearest Neighbor Searching [J].
Arya, Sunil ;
Malamatos, Theocharis ;
Mount, David M. .
JOURNAL OF THE ACM, 2009, 57 (01)
[3]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[4]  
Duch W, 2002, ADV SOFT COMP, V17, P13
[5]  
Duch W, 2000, CONTROL CYBERN, V29, P937
[6]  
Duch W., 2012, IEEE WORLD C COMP IN, P132
[7]  
DUCH W, 2000, APPL MATH COMPUTER S, V10, P101
[8]  
Duch W, 2009, LECT NOTES COMPUT SC, V5864, P206, DOI 10.1007/978-3-642-10684-2_23
[9]  
Duda R. O., 2001, Patter Classification
[10]  
Jankowski N., 2011, SCI, V358