Relative entropic uncertainty relation for scalar quantum fields

被引:6
作者
Floerchinger, Stefan [1 ]
Haas, Tobias [1 ]
Schroefl, Markus [1 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
关键词
INFORMATION-THEORY; INEQUALITIES; MECHANICS; PRINCIPLE; CRITERION;
D O I
10.21468/SciPostPhys.12.3.089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entropic uncertainty is a well-known concept to formulate uncertainty relations for continuous variable quantum systems with finitely many degrees of freedom. Typically, the bounds of such relations scale with the number of oscillator modes, preventing a straightforward generalization to quantum field theories. In this work, we overcome this difficulty by introducing the notion of a functional relative entropy and show that it has a meaningful field theory limit. We present the first entropic uncertainty relation for a scalar quantum field theory and exemplify its behavior by considering few particle excitations and the thermal state. Also, we show that the relation implies the multidimensional Heisenberg uncertainty relation.
引用
收藏
页数:23
相关论文
共 71 条
[61]  
Streater R.F., 1989, PCT, spin and statistics, and all that, DOI DOI 10.1515/9781400884230
[62]   Uncertainty Relation for Smooth Entropies [J].
Tomamichel, Marco ;
Renner, Renato .
PHYSICAL REVIEW LETTERS, 2011, 106 (11)
[63]   Exact Shannon entropies for the multidimensional harmonic states [J].
Toranzo, I. V. ;
Dehesa, J. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 516 :273-279
[64]   Einstein-Podolsky-Rosen Paradox and Quantum Entanglement at Subnucleonic Scales [J].
Tu, Zhoudunming ;
Kharzeev, Dmitri E. ;
Ullrich, Thomas .
PHYSICAL REVIEW LETTERS, 2020, 124 (06)
[65]   Suppressing quantum fluctuations in classicalization [J].
Vikman, Alexander .
EPL, 2013, 101 (03)
[66]   Revealing Hidden Einstein-Podolsky-Rosen Nonlocality [J].
Walborn, S. P. ;
Salles, A. ;
Gomes, R. M. ;
Toscano, F. ;
Souto Ribeiro, P. H. .
PHYSICAL REVIEW LETTERS, 2011, 106 (13)
[67]   Entropic Entanglement Criteria for Continuous Variables [J].
Walborn, S. P. ;
Taketani, B. G. ;
Salles, A. ;
Toscano, F. ;
de Matos Filho, R. L. .
PHYSICAL REVIEW LETTERS, 2009, 103 (16)
[68]   Gaussian quantum information [J].
Weedbrook, Christian ;
Pirandola, Stefano ;
Garcia-Patron, Raul ;
Cerf, Nicolas J. ;
Ralph, Timothy C. ;
Shapiro, Jeffrey H. ;
Lloyd, Seth .
REVIEWS OF MODERN PHYSICS, 2012, 84 (02) :621-669
[69]  
Wehrl A., 1979, Reports on Mathematical Physics, V16, P353, DOI 10.1016/0034-4877(79)90070-3
[70]   Quantum mechanics and Group theory. [J].
Weyl, H. .
ZEITSCHRIFT FUR PHYSIK, 1927, 46 (1-2) :1-46