Relative entropic uncertainty relation for scalar quantum fields

被引:6
作者
Floerchinger, Stefan [1 ]
Haas, Tobias [1 ]
Schroefl, Markus [1 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
关键词
INFORMATION-THEORY; INEQUALITIES; MECHANICS; PRINCIPLE; CRITERION;
D O I
10.21468/SciPostPhys.12.3.089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entropic uncertainty is a well-known concept to formulate uncertainty relations for continuous variable quantum systems with finitely many degrees of freedom. Typically, the bounds of such relations scale with the number of oscillator modes, preventing a straightforward generalization to quantum field theories. In this work, we overcome this difficulty by introducing the notion of a functional relative entropy and show that it has a meaningful field theory limit. We present the first entropic uncertainty relation for a scalar quantum field theory and exemplify its behavior by considering few particle excitations and the thermal state. Also, we show that the relation implies the multidimensional Heisenberg uncertainty relation.
引用
收藏
页数:23
相关论文
共 71 条
[1]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[2]   Dynamics of entanglement in expanding quantum fields [J].
Berges, Juergen ;
Floerchinger, Stefan ;
Venugopalan, Raju .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04)
[3]   Thermal excitation spectrum from entanglement in an expanding quantum string [J].
Berges, Juergen ;
Floerchinger, Stefan ;
Venugopalan, Raju .
PHYSICS LETTERS B, 2018, 778 :442-446
[4]   The uncertainty principle in the presence of quantum memory [J].
Berta, Mario ;
Christandl, Matthias ;
Colbeck, Roger ;
Renes, Joseph M. ;
Renner, Renato .
NATURE PHYSICS, 2010, 6 (09) :659-662
[5]  
Bialynicki-Birula I., 2011, ENTROPIC UNCERTAINTY, DOI [10.1007 /978-90-481-3890-6_1, DOI 10.1007/978-90-481-3890-6_1]
[6]   Formulation of the uncertainty relations in terms of the Renyi entropies [J].
Bialynicki-Birula, Iwo .
PHYSICAL REVIEW A, 2006, 74 (05)
[7]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[8]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[9]   The quantum mechanics of the impact process [J].
Born, M .
ZEITSCHRIFT FUR PHYSIK, 1926, 37 (12) :863-867
[10]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,