REGULAR PREHOMOGENEOUS VECTOR SPACES FOR VALUED DYNKIN QUIVERS

被引:0
作者
Kamiyoshi, Tomohiro [1 ]
Kurosawa, Yoshiteru [2 ]
Nagase, Hiroshi [3 ]
Nagura, Makoto [4 ]
机构
[1] Matsue Coll, Dept Sci, Natl Inst Technol, Nishi Ikuma 14-4, Matsue, Shimane 6908518, Japan
[2] Numazu Coll, Dept Liberal Arts, Natl Inst Technol, Ooka 3600, Numazu, Shizuoka 4108501, Japan
[3] Tokyo Gakugei Univ, Dept Math, 4-1-1 Nukuikitamachi, Koganei, Tokyo 1848501, Japan
[4] Nara Coll, Dept Liberal Studies, Natl Inst Technol, Yamato Koriyama, Nara 6391080, Japan
关键词
hom-orthogonal partial tilting module; valued Dynkin quiver; regular prehomogeneous vector space; REPRESENTATIONS; INVARIANTS; GRAPHS;
D O I
10.21099/tkbjm/1571968822
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce regular prehomogeneous vector spaces associated with an arbitrary valued Dynkin graph (Gamma, v) having a fixed oriented modulation (M, Omega) over the ground field K. Here K is of characteristic zero, but it may not be algebraically closed. We will construct a fundamental theory of such prehomogeneous vector spaces. Each generic point of a regular prehomogeneous vector space corresponds to a hom-orthogonal partial tilting Lambda-module, where Lambda is the tensor K-algebra of (M, Omega). We count the number of isomorphism classes of hom-orthogonal partial tilting L-modules of type B-n, C-n, F-4 and G(2). As a consequence of our theorem, we estimate lower and upper bounds for the number of basic relative invariants of regular prehomogeneous vector spaces for any valued Dynkin quiver.
引用
收藏
页码:71 / 111
页数:41
相关论文
共 15 条