Tunneling between parallel one-dimensional Wigner crystals

被引:4
作者
Mendez-Camacho, R. [1 ,2 ]
Cruz-Hernandez, E. [2 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ciencias, Av Chapultepec 1570, San Luis Potosi 78295, San Luis Potosi, Mexico
[2] Univ Autonoma San Luis Potosi, Coordinac Innovac & Aplicac Ciencia & Tecnol, Sierra Leona 550, San Luis Potosi 78210, San Luis Potosi, Mexico
关键词
ELECTRON; LOCALIZATION; CONDUCTANCE; CIRCUITS;
D O I
10.1038/s41598-022-08367-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vertically aligned arrays are a frequent outcome in the nanowires synthesis by self-assembly techniques or in its subsequent processing. When these nanowires are close enough, quantum electron tunneling is expected between them. Then, because extended or localized electronic states can be established in the wires by tuning its electron density, the tunneling configuration between adjacent wires could be conveniently adjusted by an external gate. In this contribution, by considering the collective nature of electrons using a Yukawa-like effective potential, we explore the electron interaction between closely spaced, parallel nanowires while varying the electron density and geometrical parameters. We find that, at a low-density Wigner crystal regime, the tunneling can take place between adjacent localized states along and transversal to the wires axis, which in turn allows to create two- and three-dimensional electronic distributions with valuable potential applications.
引用
收藏
页数:10
相关论文
共 42 条
[1]   First Demonstration of Vertically Stacked Gate-All-Around Highly Strained Germanium Nanowire pFETs [J].
Capogreco, E. ;
Witters, L. ;
Arimura, H. ;
Sebaai, F. ;
Porret, C. ;
Hikavyy, A. ;
Loo, R. ;
Milenin, A. P. ;
Eneman, G. ;
Favia, P. ;
Bender, H. ;
Wostyn, K. ;
Litta, E. Dentoni ;
Schulze, A. ;
Vrancken, C. ;
Opdebeeck, A. ;
Mitard, J. ;
Langer, R. ;
Holsteyns, F. ;
Waldron, N. ;
Barla, K. ;
De Heyn, V. ;
Mocuta, D. ;
Collaert, N. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (11) :5145-5150
[2]   Atomistic theory of electronic and optical properties of InAsP/InP nanowire quantum dots [J].
Cygorek, Moritz ;
Korkusinski, Marek ;
Hawrylak, Pawel .
PHYSICAL REVIEW B, 2020, 101 (07)
[3]   The one-dimensional Wigner crystal in carbon nanotubes [J].
Deshpande, Vikram V. ;
Bockrath, Marc .
NATURE PHYSICS, 2008, 4 (04) :314-318
[4]   Signatures of Wigner localization in one-dimensional systems [J].
Diaz-Marquez, Alejandro ;
Battaglia, Stefano ;
Bendazzoli, Gian Luigi ;
Evangelisti, Stefano ;
Leininger, Thierry ;
Berger, J. A. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (12)
[5]   Wigner localization in two and three dimensions: An ab initio approach [J].
Escobar Azor, Miguel ;
Alves, Estefania ;
Evangelisti, Stefano ;
Berger, J. Arjan .
JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (12)
[6]   Deformed Wigner crystal in a one-dimensional quantum dot [J].
Gindikin, Yasha ;
Sablikov, V. A. .
PHYSICAL REVIEW B, 2007, 76 (04)
[7]  
Gojman B., 2006, 2006 1 INT C NANONET, P1
[8]   Silicon vertically integrated nanowire field effect transistors [J].
Goldberger, Josh ;
Hochbaum, Allon I. ;
Fan, Rong ;
Yang, Peidong .
NANO LETTERS, 2006, 6 (05) :973-977
[9]   Growth of nanowire superlattice structures for nanoscale photonics and electronics [J].
Gudiksen, MS ;
Lauhon, LJ ;
Wang, J ;
Smith, DC ;
Lieber, CM .
NATURE, 2002, 415 (6872) :617-620
[10]  
Harrison P., 2016, QUANTUM WELLS WIRES, DOI [10.1002/9781118923337, DOI 10.1002/9781118923337]