Buoyancy Waves in Earth's Magnetosphere: Calculations for a 2-D Wedge Magnetosphere

被引:9
作者
Wolf, R. A. [1 ]
Toffoletto, F. R. [1 ]
Schutza, A. M. [1 ]
Yang, J. [1 ]
机构
[1] Rice Univ, Phys & Astron Dept, Houston, TX 77005 USA
关键词
ULF waves; braking oscillations; bursty bulk flows; magnetic buoyancy; OSCILLATORY FLOW BRAKING; BALLOONING INSTABILITY; PLASMA SHEET; MAGNETOTAIL;
D O I
10.1029/2017JA025006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
To improve theoretical understanding of the braking oscillations observed in Earth's inner plasma sheet, we have derived a theoretical model that describes k(vertical bar vertical bar) = 0 magnetohydrodynamic waves in an idealized magnetospheric configuration that consists of a 2-D wedge with circular-arc field lines. The low-frequency, short-perpendicular-wavelength mode obeys a differential equation that is often used to describe buoyancy oscillations in a neutral atmosphere, so we call those waves "buoyancy waves," though the magnetospheric buoyancy force results from magnetic tension rather than gravity. Propagation of the wave is governed mainly by a position-dependent frequency omega(b), the "buoyancy frequency," which is a fundamental property of the magnetosphere. The waves propagate if omega(b) > omega but otherwise evanesce. In the wedge magnetosphere,omega(b) turns out to be exactly the fundamental oscillation frequency for poloidal oscillations of a thin magnetic filament, and we assume that the same is true for the real magnetosphere. Observable properties of buoyancy oscillations are discussed, but propagation characteristics vary considerably with the state of the magnetosphere. For a given event, the buoyancy frequency and propagation characteristics can be determined from pressure and density profiles and a magnetic field model, and these characteristics have been worked out for one typical configuration. A localized disturbance that initially resembles a dipolarizing flux bundle spreads east-west and also penetrates into the plasmasphere to some extent. The calculated amplitude near the center of the original wave packet decays in a few oscillation periods, even though our calculation includes no dissipation.
引用
收藏
页码:3548 / 3564
页数:17
相关论文
共 50 条
[41]   Ion-Mediated Tearing and Kink Instabilities in the Earth's Magnetosphere: Hybrid-Vlasov Simulations [J].
Zaitsev, I. ;
Cozzani, G. ;
Alho, M. ;
Horaites, K. ;
Zhou, H. ;
Kit, A. ;
Pfau-Kempf, Y. ;
Hoilijoki, S. ;
Ganse, U. ;
Battarbee, M. ;
Papadakis, K. ;
Suni, J. ;
Dubart, M. ;
Tesema-Kebede, F. ;
Workayehu, A. ;
Tarvus, V. ;
Kotipalo, L. ;
Koikkalainen, V. ;
Turc, L. ;
Palmroth, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2025, 130 (01)
[42]   Selective Acceleration of O+ by Drift-Bounce Resonance in the Earth's Magnetosphere: MMS Observations [J].
Oimatsu, S. ;
Nose, M. ;
Le, G. ;
Fuselier, S. A. ;
Ergun, R. E. ;
Lindqvist, P. -A. ;
Sormakov, D. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (02)
[43]   Direct Evidence of Drift-Compressional Wave Generation in the Earth's Magnetosphere Detected by Arase [J].
Yamamoto, K. ;
Rubtsov, A. V. ;
Kostarev, D. V. ;
Mager, P. N. ;
Klimushkin, D. Yu. ;
Nose, M. ;
Matsuoka, A. ;
Asamura, K. ;
Miyoshi, Y. ;
Yokota, S. ;
Kasahara, S. ;
Hori, T. ;
Keika, K. ;
Kasahara, Y. ;
Kumamoto, A. ;
Tsuchiya, F. ;
Shoji, M. ;
Nakamura, S. ;
Shinohara, I. .
GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (08)
[44]   Earth's magnetotail variability during supersubstorms (SSSs): A study on solar wind-magnetosphere-ionosphere coupling [J].
Hajra, Rajkumar ;
Echer, Ezequiel ;
Franco, Adriane Marques de Souza ;
Bolzan, Mauricio Jose Alves .
ADVANCES IN SPACE RESEARCH, 2023, 72 (04) :1208-1223
[45]   Standing Alfven Waves in Jupiter's Magnetosphere as a Source of ∼10-to 60-Min Quasiperiodic Pulsations [J].
Manners, H. ;
Masters, A. ;
Yates, J. N. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (17) :8746-8754
[46]   Solar Orbiter's first Venus flyby MAG observations of structures and waves associated with the induced Venusian magnetosphere [J].
Volwerk, M. ;
Horbury, T. S. ;
Woodham, L. D. ;
Bale, S. D. ;
Wedlund, C. Simon ;
Schmid, D. ;
Allen, R. C. ;
Angelini, V ;
Baumjohann, W. ;
Berger, L. ;
Edberg, N. J. T. ;
Evans, V ;
Hadid, L. Z. ;
Ho, G. C. ;
Khotyaintsev, Yu, V ;
Magnes, W. ;
Maksimovic, M. ;
O'Brien, H. ;
Steller, M. B. ;
Rodriguez-Pacheco, J. ;
Wimmer-Scheingruber, R. F. .
ASTRONOMY & ASTROPHYSICS, 2021, 656 (656)
[47]   Inward Propagation of Flow-Generated Pi2 Waves From the Plasma Sheet to the Inner Magnetosphere [J].
Wang, Chih-Ping ;
Xing, Xiaoyan ;
Bortnik, Jacob ;
Chu, Xiangning .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (02)
[48]   First in situ observation of the Moon-originating ions in the Earth's Magnetosphere by MAP-PACE on SELENE (KAGUYA) [J].
Tanaka, Takaaki ;
Saito, Yoshifumi ;
Yokota, Shoichiro ;
Asamura, Kazushi ;
Nishino, Masaki N. ;
Tsunakawa, Hideo ;
Shibuya, Hidetoshi ;
Matsushima, Masaki ;
Shimizu, Hisayoshi ;
Takahashi, Futoshi ;
Fujimoto, Masaki ;
Mukai, Toshifumi ;
Terasawa, Toshio .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[49]   Configurations of Earth's magnetosphere in response to variations in z component Solar-wind flow during the southward IMF [J].
Li, Lingjie .
PHYSICA SCRIPTA, 2021, 96 (01)
[50]   Magnetic field depression at the Earth's surface during energetic neutral atom emission fade-out in the inner magnetosphere [J].
Nose, M. ;
Ohtani, S. ;
Brandt, P. C. Son ;
Iyemori, T. ;
Keika, K. ;
Lee, D. -Y. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116