Buoyancy Waves in Earth's Magnetosphere: Calculations for a 2-D Wedge Magnetosphere

被引:9
作者
Wolf, R. A. [1 ]
Toffoletto, F. R. [1 ]
Schutza, A. M. [1 ]
Yang, J. [1 ]
机构
[1] Rice Univ, Phys & Astron Dept, Houston, TX 77005 USA
关键词
ULF waves; braking oscillations; bursty bulk flows; magnetic buoyancy; OSCILLATORY FLOW BRAKING; BALLOONING INSTABILITY; PLASMA SHEET; MAGNETOTAIL;
D O I
10.1029/2017JA025006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
To improve theoretical understanding of the braking oscillations observed in Earth's inner plasma sheet, we have derived a theoretical model that describes k(vertical bar vertical bar) = 0 magnetohydrodynamic waves in an idealized magnetospheric configuration that consists of a 2-D wedge with circular-arc field lines. The low-frequency, short-perpendicular-wavelength mode obeys a differential equation that is often used to describe buoyancy oscillations in a neutral atmosphere, so we call those waves "buoyancy waves," though the magnetospheric buoyancy force results from magnetic tension rather than gravity. Propagation of the wave is governed mainly by a position-dependent frequency omega(b), the "buoyancy frequency," which is a fundamental property of the magnetosphere. The waves propagate if omega(b) > omega but otherwise evanesce. In the wedge magnetosphere,omega(b) turns out to be exactly the fundamental oscillation frequency for poloidal oscillations of a thin magnetic filament, and we assume that the same is true for the real magnetosphere. Observable properties of buoyancy oscillations are discussed, but propagation characteristics vary considerably with the state of the magnetosphere. For a given event, the buoyancy frequency and propagation characteristics can be determined from pressure and density profiles and a magnetic field model, and these characteristics have been worked out for one typical configuration. A localized disturbance that initially resembles a dipolarizing flux bundle spreads east-west and also penetrates into the plasmasphere to some extent. The calculated amplitude near the center of the original wave packet decays in a few oscillation periods, even though our calculation includes no dissipation.
引用
收藏
页码:3548 / 3564
页数:17
相关论文
共 50 条
[21]   Charge-Exchange Byproduct Cold Protons in the Earth's Magnetosphere [J].
Borovsky, Joseph E. ;
Liu, Jianghuai ;
Ilie, Raluca ;
Liemohn, Michael W. .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 8
[22]   Impacts of Ionospheric Ions on Magnetic Reconnection and Earth's Magnetosphere Dynamics [J].
Toledo-Redondo, S. ;
Andre, M. ;
Aunai, N. ;
Chappell, C. R. ;
Dargent, J. ;
Fuselier, S. A. ;
Glocer, A. ;
Graham, D. B. ;
Haaland, S. ;
Hesse, M. ;
Kistler, L. M. ;
Lavraud, B. ;
Li, W. ;
Moore, T. E. ;
Tenfjord, P. ;
Vines, S. K. .
REVIEWS OF GEOPHYSICS, 2021, 59 (03)
[23]   REVIEW AND COMPARISON OF MHD WAVE CHARACTERISTICS AT THE SUN AND IN EARTH'S MAGNETOSPHERE [J].
Chelpanov, M. A. ;
Anfinogentov, S. A. ;
Kostarev, D. V. ;
Mikhailova, O. S. ;
Rubtsov, A. V. ;
Fedenev, V. V. ;
Chelpanov, A. A. .
SOLAR-TERRESTRIAL PHYSICS, 2022, 8 (04) :3-27
[24]   The Global Distribution of Ultralow-Frequency Waves in Jupiter's Magnetosphere [J].
Manners, H. ;
Masters, A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (10)
[25]   Thin current sheets in the presence of a guiding magnetic field in Earth's magnetosphere [J].
Malova, H. V. ;
Popov, V. Y. ;
Mingalev, O. V. ;
Mingalev, I. V. ;
Mel'nik, M. N. ;
Artemyev, A. V. ;
Petrukovich, A. A. ;
Delcourt, D. C. ;
Shen, C. ;
Zelenyi, L. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
[26]   A Review of Observations of Molecular Ions in the Earth's Magnetosphere-Ionosphere System [J].
Lin, Mei-Yun ;
Ilie, Raluca .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 8
[27]   Particle Precipitation Effects on Convection and the Magnetic Reconnection Rate in Earth's Magnetosphere [J].
Jensen, Joseph B. ;
Raeder, Joachim ;
Maynard, Kristofor ;
Cramer, W. Douglas .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (11) :11413-11427
[28]   Determining the thickness of the low-latitude boundary layer in the Earth’s magnetosphere [J].
S. S. Znatkova ;
E. E. Antonova ;
M. S. Pulinets ;
I. P. Kirpichev .
Geomagnetism and Aeronomy, 2013, 53 :699-710
[29]   Turbulence in a global magnetohydrodynamic simulation of the Earth's magnetosphere during northward and southward interplanetary magnetic field [J].
El-Alaoui, M. ;
Richard, R. L. ;
Ashour-Abdalla, M. ;
Walker, R. J. ;
Goldstein, M. L. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2012, 19 (02) :165-175
[30]   Observational evidence of the drift-mirror plasma instability in Earth's inner magnetosphere [J].
Soto-Chavez, A. R. ;
Lanzerotti, L. J. ;
Manweiler, J. W. ;
Gerrard, A. ;
Cohen, R. ;
Xia, Z. ;
Chen, L. ;
Kim, H. .
PHYSICS OF PLASMAS, 2019, 26 (04)