Properties of non-simultaneous blow-up solutions in nonlocal parabolic equations

被引:17
作者
Liu, Bingchen [1 ]
Li, Fengjie [1 ]
机构
[1] China Univ Petr, Coll Math & Computat Sci, Dongying 257061, Shandong, Peoples R China
关键词
Non-simultaneous blow-up; Simultaneous blow-up; Total blow-up; Single point blow-up; Blow-up rate; REACTION-DIFFUSION SYSTEM; GLOBAL EXISTENCE;
D O I
10.1016/j.na.2009.07.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with blow-up solutions in parabolic equations coupled via nonlocal nonlinearities, subject to homogeneous Dirichlet conditions. Firstly, some criteria on non-simultaneous and simultaneous blow-up are given, including four kinds of phenomena: (i) the existence of non-simultaneous blow-up; (ii) the coexistence of non-simultaneous and simultaneous blow-up; (iii) any blow-up must be simultaneous; (iv) any blow-up must be non-simultaneous. Next, total versus single point blow-up are classified completely. Moreover, blow-up rates are obtained for both non-simultaneous and simultaneous blow-up Solutions. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1065 / 1074
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[2]   The role of non-linear diffusion in non-simultaneous blow-up [J].
Brändle, C ;
Quirós, F ;
Rossi, JD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (01) :92-104
[3]   A CLASS OF NON-LINEAR NON-CLASSICAL PARABOLIC EQUATIONS [J].
CANNON, JR ;
YIN, HM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 79 (02) :266-288
[4]   Global existence and blow-up for a nonlinear reaction-diffusion system [J].
Chen, HW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (02) :481-492
[5]   A SEMILINEAR PARABOLIC-SYSTEM IN A BOUNDED DOMAIN [J].
ESCOBEDO, M ;
HERRERO, MA .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 165 :315-336
[6]  
Friedman A., 1964, Partial differential equations of parabolic type
[7]  
Li FC, 2003, DISCRETE CONT DYN-A, V9, P1519
[8]   Simultaneous and non-simultaneous blow-up for heat equations with coupled nonlinear boundary fluxes [J].
Li, Fengjie ;
Liu, Bingchen ;
Zheng, Sining .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (05) :717-735
[9]  
Li HL, 2005, DISCRETE CONT DYN-A, V13, P683
[10]  
Lin Z., 1997, Northeast. Math. J., V13, P327