Heterogeneous MXene/PS-b-P2VP Nanofluidic Membranes with Controllable Ion Transport for Osmotic Energy Conversion

被引:89
作者
Lin, Xiangbin [1 ,2 ]
Liu, Pei [1 ,2 ]
Xin, Weiwen [1 ,2 ]
Teng, Yunfei [1 ,2 ]
Chen, Jianjun [1 ]
Wu, Yadong [1 ,2 ]
Zhao, Yifei [1 ]
Kong, Xiang-Yu [1 ]
Jiang, Lei [1 ,2 ]
Wen, Liping [1 ,2 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, CAS Key Lab Bioinspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100049, Peoples R China
基金
国家重点研发计划;
关键词
asymmetric nanochannels; block copolymers; controlled ion transport; osmotic energy conversion; tunable surface charges; PRESSURE-RETARDED OSMOSIS; BLOCK-COPOLYMER; POWER-GENERATION; FILMS; SEPARATION; EXCHANGE; CHANNELS; GOLD;
D O I
10.1002/adfm.202105013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Membrane-based osmotic power harvesting is a strategy for sustainable power generation. 2D nanofluids with high ion conductivity and selectivity are emerging candidates for osmotic energy conversion. However, the ion diffusion under nanoconfinement is hindered by homogeneous 2D membranes with monotonic charge regulation and severe concentration polarization, which results in an undesirable power conversion performance. Here, an asymmetric nanochannel membrane with a two-layered structure is reported, in which the angstrom-scale channels of 2D transition metal carbides/nitrides (MXenes) act as a screening layer for controlling ion transport, and the nanoscale pores of the block copolymer (BCP) are the pH-responsive arrays with an ordered nanovoid structure. The heterogeneous nanofluidic device exhibits an asymmetric charge distribution and enlarged 1D BCP porosity under acidic and alkaline conditions, respectively; this improves the gradient-driven ion diffusion, allowing a high-performance osmotic energy conversion with a power density of up to 6.74 W m(-2) by mixing artificial river water and seawater. Experiments and theoretical simulations indicate that the tunable asymmetric heterostructure contributes to impairing the concentration polarization and enhancing the ion flux. This efficient osmotic energy generator can advance the fundamental understanding of the MXene-based heterogeneous nanofluidic devices as a paradigm for membrane-based energy conversion technologies.
引用
收藏
页数:10
相关论文
共 52 条
  • [1] Cao C, 2016, NAT NANOTECHNOL, V11, P713, DOI [10.1038/nnano.2016.66, 10.1038/NNANO.2016.66]
  • [2] On the Origin of Ion Selectivity in Ultrathin Nanopores: Insights for Membrane-Scale Osmotic Energy Conversion
    Cao, Liuxuan
    Wen, Qi
    Feng, Yaping
    Ji, Danyan
    Li, Hao
    Li, Ning
    Jiang, Lei
    Guo, Wei
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (39)
  • [3] Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting
    Chen, Cheng
    Liu, Dan
    He, Li
    Qin, Si
    Wang, Jiemin
    Razal, Joselito M.
    Kotov, Nicholas A.
    Lei, Weiwei
    [J]. JOULE, 2020, 4 (01) : 247 - 261
  • [4] Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds
    Chen, Winston Yenyu
    Jiang, Xiaofan
    Lai, Sz-Nian
    Peroulis, Dimitrios
    Stanciu, Lia
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [5] Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus Brownian dynamics
    Corry, B
    Kuyucak, S
    Chung, SH
    [J]. BIOPHYSICAL JOURNAL, 2000, 78 (05) : 2364 - 2381
  • [6] Oppositely Charged Ti3C2Tx MXene Membranes with 2D Nanofluidic Channels for Osmotic Energy Harvesting
    Ding, Li
    Xiao, Dan
    Lu, Zong
    Deng, Junjie
    Wei, Yanying
    Caro, Juergen
    Wang, Haihui
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (22) : 8720 - 8726
  • [7] MXene molecular sieving membranes for highly efficient gas separation
    Ding, Li
    Wei, Yanying
    Li, Libo
    Zhang, Tao
    Wang, Haihui
    Xue, Jian
    Ding, Liang-Xin
    Wang, Suqing
    Caro, Juergen
    Gogotsi, Yury
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [8] Current status of ion exchange membranes for power generation from salinity gradients
    Dlugolecki, Piotr
    Nymeijer, Kitty
    Metz, Sybrand
    Wessling, Matthias
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2008, 319 (1-2) : 214 - 222
  • [9] Duan CH, 2010, NAT NANOTECHNOL, V5, P848, DOI [10.1038/nnano.2010.233, 10.1038/NNANO.2010.233]
  • [10] Single-layer MoS2 nanopores as nanopower generators
    Feng, Jiandong
    Graf, Michael
    Liu, Ke
    Ovchinnikov, Dmitry
    Dumcenco, Dumitru
    Heiranian, Mohammad
    Nandigana, Vishal
    Aluru, Narayana R.
    Kis, Andras
    Radenovic, Aleksandra
    [J]. NATURE, 2016, 536 (7615) : 197 - +