High-Resolution Ex Vivo Microstructural MRI After Restoring Ventricular Geometry via 3D Printing

被引:4
作者
Cork, Tyler E. [1 ,2 ]
Perotti, Luigi E. [3 ]
Verzhbinsky, Ilya A. [1 ]
Loecher, Michael [1 ]
Ennis, Daniel B. [1 ]
机构
[1] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[3] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA
来源
FUNCTIONAL IMAGING AND MODELING OF THE HEART, FIMH 2019 | 2019年 / 11504卷
关键词
3D printing; Magnetic resonance imaging; Cardiac electromechanics; Computational modeling; MAGNETIC-RESONANCE;
D O I
10.1007/978-3-030-21949-9_20
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Computational modeling of the heart requires accurately incorporating both gross anatomical detail and local microstructural information. Together, these provide the necessary data to build 3D meshes for simulation of cardiac mechanics and electrophysiology. Recent MRI advances make it possible to measure detailed heart motion in vivo, but in vivo microstructural imaging of the heart remains challenging. Consequently, the most detailed measurements of microstructural organization and microanatomical infarct details are obtained ex vivo. The objective of this work was to develop and evaluate a new method for restoring ex vivo ventricular geometry to match the in vivo configuration. This approach aids the integration of high-resolution ex vivo microstructural information with in vivo motion measurements. The method uses in vivo cine imaging to generate surface meshes, then creates a 3D printed left ventricular (LV) blood pool cast and a pericardial mold to restore the ex vivo cardiac geometry to a mid-diastasis reference configuration. The method was evaluated in healthy (N= 7) and infarcted (N= 3) swine. Dice similarity coefficients were calculated between in vivo and ex vivo images for the LV cavity (0.93 +/- 0.01), right ventricle (RV) cavity (0.80 +/- 0.05), and the myocardium (0.72 +/- 0.04). The R-2 coefficient between in vivo and ex vivo LV and RV cavity volumes were 0.95 and 0.91, respectively. These results suggest that this method adequately restores ex vivo geometry to match in vivo geometry. This approach permits a more precise incorporation of high-resolution ex vivo anatomical and microstructural data into computational models that use in vivo data for simulation of cardiac mechanics and electrophysiology.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 16 条
[1]   Convex optimized diffusion encoding (CODE) gradient waveforms for minimum echo time and bulk motion-compensated diffusion-weighted MRI [J].
Aliotta, Eric ;
Wu, Holden H. ;
Ennis, Daniel B. .
MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (02) :717-729
[2]   A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models [J].
Bayer, J. D. ;
Blake, R. C. ;
Plank, G. ;
Trayanova, N. A. .
ANNALS OF BIOMEDICAL ENGINEERING, 2012, 40 (10) :2243-2254
[3]   Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images [J].
Ennis, DB ;
Kindlmann, G .
MAGNETIC RESONANCE IN MEDICINE, 2006, 55 (01) :136-146
[4]   Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement [J].
Kellman, P ;
Arai, AE ;
McVeigh, ER ;
Aletras, AH .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (02) :372-383
[5]   Microstructural Infarct Border Zone Remodeling in the Post-infarct Swine Heart Measured by Diffusion Tensor MRI [J].
Kung, Geoffrey L. ;
Vaseghi, Marmar ;
Gahm, Jin K. ;
Shevtsov, Jane ;
Garfinkel, Alan ;
Shivkumar, Kalyanam ;
Ennis, Daniel B. .
FRONTIERS IN PHYSIOLOGY, 2018, 9
[6]   Assessment of Myocardial Microstructural Dynamics by In Vivo Diffusion Tensor Cardiac Magnetic Resonance [J].
Nielles-Vallespin, Sonia ;
Khalique, Zohya ;
Ferreira, Pedro F. ;
de Silva, Ranil ;
Scott, Andrew D. ;
Kilner, Philip ;
McGill, Laura-Ann ;
Giannakidis, Archontis ;
Gatehouse, Peter D. ;
Ennis, Daniel ;
Aliotta, Eric ;
Al-Khalil, Majid ;
Kellman, Peter ;
Mazilu, Dumitru ;
Balaban, Robert S. ;
Firmin, David N. ;
Arai, Andrew E. ;
Pennell, Dudley J. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 69 (06) :661-676
[7]   Electrophysiology of Heart Failure Using a Rabbit Model: From the Failing Myocyte to Ventricular Fibrillation [J].
Ponnaluri, Aditya V. S. ;
Perotti, Luigi E. ;
Liu, Michael ;
Qu, Zhilin ;
Weiss, James N. ;
Ennis, Daniel B. ;
Klug, William S. ;
Garfinkel, Alan .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (06)
[8]   Effect of intra-myocardial Algisyl-LVR™ injectates on fibre structure in porcine heart failure [J].
Sack, K. L. ;
Aliotta, E. ;
Choy, J. S. ;
Ennis, D. B. ;
Davies, N. H. ;
Franz, T. ;
Kassab, G. S. ;
Guccione, J. M. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2018, 87 :172-179
[9]   Dual-Phase Cardiac Diffusion Tensor Imaging with Strain Correction [J].
Stoeck, Christian T. ;
Kalinowska, Aleksandra ;
von Deuster, Constantin ;
Harmer, Jack ;
Chan, Rachel W. ;
Niemann, Markus ;
Manka, Robert ;
Atkinson, David ;
Sosnovik, David E. ;
Mekkaoui, Choukri ;
Kozerke, Sebastian .
PLOS ONE, 2014, 9 (09)
[10]   Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging [J].
Teh, Irvin ;
McClymont, Darryl ;
Burton, Rebecca A. B. ;
Maguire, Mahon L. ;
Whittington, Hannah J. ;
Lygate, Craig A. ;
Kohl, Peter ;
Schneider, Jurgen E. .
SCIENTIFIC REPORTS, 2016, 6