The Role of Regularization Parameter of Subspace-based Optimization Method in Solving Inverse Scattering Problems

被引:0
作者
Ye, Xiuzhu [1 ]
Chen, Xudong [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
来源
APMC: 2009 ASIA PACIFIC MICROWAVE CONFERENCE, VOLS 1-5 | 2009年
关键词
Inverse scattering; ill condition; regularization;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates a regularization scheme in the recently proposed subspace-based optimization method for solving inverse scattering problems. The number of leading singular values of a current-to-field mapping operator is found to balance the accuracy and the stability of the solution. If the number of leading singular values is chosen as a large number, the noise is amplified in the inverse process. On the other hand, if this parameter is chosen to be a small number, the convergence of the optimization method will be slow. This paper investigates the method of choosing the number of leading singular values of the current-to-field mapping operator.
引用
收藏
页码:1549 / 1552
页数:4
相关论文
共 50 条
  • [31] Solving inverse problems in injection molding by Bregman regularization mehod
    Tan, Tao
    Li, Xingsi
    Ju, Cuirong
    Yuan, Yanli
    CJK-OSM 4: The Fourth China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, 2006, : 593 - 598
  • [32] A Sampling Method for Solving Inverse Scattering Problems with a Locally Perturbed Half Plane
    冯立新
    马富明
    李荣华
    NortheasternMathematicalJournal, 2003, (01) : 1 - 4
  • [33] A regularized sampling method for solving three-dimensional inverse scattering problems
    Colton, D
    Giebermann, K
    Monk, P
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06) : 2316 - 2330
  • [34] Overview and Classification of Some Regularization Techniques for the Gauss-Newton Inversion Method Applied to Inverse Scattering Problems
    Mojabi, Puyan
    LoVetri, Joe
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (09) : 2658 - 2665
  • [35] χ2 TESTS FOR THE CHOICE OF THE REGULARIZATION PARAMETER IN NONLINEAR INVERSE PROBLEMS
    Mead, J. L.
    Hammerquist, C. C.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (03) : 1213 - 1230
  • [36] Automatic selection of regularization parameter in inverse heat conduction problems
    Pacheco, C. C.
    Lacerda, C. R.
    Colaco, M. J.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 139
  • [37] Multiresolution Subspace-Based Optimization Method for the Retrieval of 2-D Perfect Electric Conductors
    Ye, Xiuzhu
    Zardi, Francesco
    Salucci, Marco
    Massa, Andrea
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (04) : 1732 - 1744
  • [38] Subspace-Based Optimization Method for Reconstruction of 2-D Complex Anisotropic Dielectric Objects
    Agarwal, Krishna
    Pan, Li
    Chen, Xudong
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2010, 58 (04) : 1065 - 1074
  • [39] DIAS: A Data-Informed Active Subspace Regularization Framework for Inverse Problems
    Nguyen, Hai
    Wittmer, Jonathan
    Bui-Thanh, Tan
    COMPUTATION, 2022, 10 (03)
  • [40] Fast and Accurate Cascaded Particle Swarm Gradient Optimization Method for Solving 2-D Inverse Scattering Problems
    Farmahini-Farahani, M.
    Faraji-Dana, R.
    Shahabadi, M.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2009, 24 (05): : 511 - 517