The Role of Regularization Parameter of Subspace-based Optimization Method in Solving Inverse Scattering Problems

被引:0
作者
Ye, Xiuzhu [1 ]
Chen, Xudong [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
来源
APMC: 2009 ASIA PACIFIC MICROWAVE CONFERENCE, VOLS 1-5 | 2009年
关键词
Inverse scattering; ill condition; regularization;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates a regularization scheme in the recently proposed subspace-based optimization method for solving inverse scattering problems. The number of leading singular values of a current-to-field mapping operator is found to balance the accuracy and the stability of the solution. If the number of leading singular values is chosen as a large number, the noise is amplified in the inverse process. On the other hand, if this parameter is chosen to be a small number, the convergence of the optimization method will be slow. This paper investigates the method of choosing the number of leading singular values of the current-to-field mapping operator.
引用
收藏
页码:1549 / 1552
页数:4
相关论文
共 50 条
  • [1] Subspace-Based Optimization Method for Solving Inverse-Scattering Problems
    Chen, Xudong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01): : 42 - 49
  • [2] An FFT Twofold Subspace-Based Optimization Method for Solving Electromagnetic Inverse Scattering Problems
    Zhong, Yu
    Chen, Xudong
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (03) : 914 - 927
  • [3] Cross-Correlated Subspace-Based Optimization Method for Solving Electromagnetic Inverse Scattering Problems
    Wang, Miao
    Sun, Shilong
    Dai, Dahai
    Zhang, Yongsheng
    Su, Yi
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (11) : 8575 - 8589
  • [4] A diagonalized improved subspace-based optimization method for solving 2-D inverse scattering problems
    Liu, Yulang
    Zhao, Zhiqin
    Zhu, Xiaozhang
    Yang, Wei
    Nie, Zaiping
    Liu, Qing-Huo
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2017, 59 (08) : 2089 - 2095
  • [5] Subspace-Based Optimization Method for Inverse Scattering Problems Utilizing Phaseless Data
    Pan, Li
    Zhong, Yu
    Chen, Xudong
    Yeo, Swee Ping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (03): : 981 - 987
  • [6] Subspace-Based Distorted-Rytov Iterative Method for Solving Inverse Scattering Problems
    Yin, Tiantian
    Pan, Li
    Chen, Xudong
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (10) : 8173 - 8183
  • [7] Wavelet Transform Subspace-Based Optimization Method for Inverse Scattering
    Yin, Tiantian
    Wei, Zhun
    Chen, Xudong
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, 2018, 3 : 176 - 184
  • [8] Multiplicative-Regularized FFT Twofold Subspace-Based Optimization Method for Inverse Scattering Problems
    Xu, Kuiwen
    Zhong, Yu
    Song, Rencheng
    Chen, Xudong
    Ran, Lixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (02): : 841 - 850
  • [9] An Improved Subspace-Based Optimization Method and Its Implementation in Solving Three-Dimensional Inverse Problems
    Zhong, Yu
    Chen, Xudong
    Agarwal, Krishna
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10): : 3763 - 3768
  • [10] Investigation of the Regularization Parameter of Subspace-based Optimization Method for Reconstruction of Uniaxial Anisotropic Objects
    Liu, Yulang
    Zhao, Zhiqin
    Zhu, Xiaozhang
    Nie, Zaiping
    Liu, Qing Huo
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 1882 - 1885