Multi-kernel one class link prediction in heterogeneous complex networks

被引:11
|
作者
Shakibian, Hadi [1 ]
Charkari, Nasrollah Moghadam [1 ]
Jalili, Saeed [1 ]
机构
[1] Tarbiat Modares Univ, Parallel & Image Proc Lab, Fac Elect & Comp Engn, Tehran, Iran
关键词
Heterogeneous complex networks; Link prediction; Meta-path; OC-SVM; Graph kernel; FRAMEWORK;
D O I
10.1007/s10489-018-1157-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The heterogeneity of a network causes major challenges for link prediction in heterogeneous complex networks. To deal with this problem, supervised link prediction could be applied to integrate heterogeneous features extracted from different nodes/relations. However, supervised link prediction might be faced with highly imbalanced data issues which results in undesirable false prediction rate. In this paper, we propose a new kernel-based one-class link predictor in heterogeneous complex networks. Assuming a set of available meta-paths, a graph kernel is extracted based on each meta-path. Then, they are combined to form a single kernel function. Afterwards, one class support vector machine (OC-SVM) would be applied on the positive node pairs to train the link predictor. The proposed method has been compared with popular link predictors using DBLP network. The results show that the method outperforms other conventional link predictors in terms of prediction performances.
引用
收藏
页码:3411 / 3428
页数:18
相关论文
共 50 条
  • [31] A Unified Link Prediction Framework for Predicting Arbitrary Relations in Heterogeneous Academic Networks
    Lu, Meilian
    Wei, Xudan
    Ye, Danna
    Dai, Yinlong
    IEEE ACCESS, 2019, 7 : 124967 - 124987
  • [32] PQKLP: Projected Quantum Kernel based Link Prediction in Dynamic Networks
    Kumar, Mukesh
    Mishra, Shivansh
    Biswas, Bhaskar
    COMPUTER COMMUNICATIONS, 2022, 196 : 249 - 267
  • [33] Collaborative linear manifold learning for link prediction in heterogeneous networks
    Liu, JiaHui
    Jin, Xu
    Hong, YuXiang
    Liu, Fan
    Chen, QiXiang
    Huang, YaLou
    Liu, MingMing
    Xie, MaoQiang
    Sun, FengChi
    INFORMATION SCIENCES, 2020, 511 : 297 - 308
  • [34] PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction
    Chen, Hongxu
    Yin, Hongzhi
    Wang, Weiqing
    Wang, Hao
    Quoc Viet Hung Nguyen
    Li, Xue
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1177 - 1186
  • [35] Tensorial graph learning for link prediction in generalized heterogeneous networks
    Chen, Zhen-Yu
    Fan, Zhi-Ping
    Sun, Minghe
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 290 (01) : 219 - 234
  • [36] Link prediction based on node weighting in complex networks
    Findik, Oguz
    Ozkaynak, Emrah
    SOFT COMPUTING, 2021, 25 (03) : 2467 - 2482
  • [37] Enhancing robustness of link prediction for noisy complex networks
    Chen, Xing
    Wu, Tao
    Xian, Xingping
    Wang, Chao
    Yuan, Ye
    Ming, Guannan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 555 (555)
  • [38] Link prediction based on node weighting in complex networks
    Oğuz Fındık
    Emrah Özkaynak
    Soft Computing, 2021, 25 : 2467 - 2482
  • [39] Community detection in complex networks using link prediction
    Cheng, Hui-Min
    Ning, Yi-Zi
    Yin, Zhao
    Yan, Chao
    Liu, Xin
    Zhang, Zhong-Yuan
    MODERN PHYSICS LETTERS B, 2018, 32 (01):
  • [40] Bimodal accuracy distribution of link prediction in complex networks
    Zhang, Chengjun
    Qian, Ming
    Shen, Xinyu
    Li, Qi
    Lei, Yi
    Yu, Wenbin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (08):